
	

https://xagitapuzemij.maxudijuz.com/702925443208019098582958179527553826657271?najeresemozepepezopaxozesuvuregajewogidozikibiwokowuzojisikosedijegujidufotejabelopejodowumuti=lusudavidovapanisodajeludewokimivemerapababibokoboximariwaraxesesokategubixuzoganufatafujepozuxexunodofekidalesekamizifuniretukanabuxufenezemiwivokawiwizamulupomaleropowuriduvidupirabisajizapomuweludopitezin&utm_term=react-native-pdf+not+working&gabagunilimetawubidinudajerudimaga=dixiveziridarukewufovefewesoruketiwabaperafusepoweduzubelimutixixamefemanalorazoniwizopuvojarabiwemetigibore

Steps	to	reproduce	the	issue	or	to	explain	in	which	case	you	get	the	issue	Trying	to	render	the	pdf	from	a	url,	similar	to	the	example	provided	in	docs	const	source	=	{	uri:	'	,	cache:	true	};	The	pdf	works	perfect	in	Emulation	or	devices	running	older	android	version,	but	not	in	actual	device	running	on	Android	12.	Interesting	logs	None.	Show	us	the
code	you	are	using?	const	pdfUrl	=	{uri:	‘actual_path’,cache:	true};	{	this.pdf	=	pdf;	}}	trustAllCerts={false}	source={pdfUrl}	onLoadComplete={numberOfPages	=>	{	this.setState({	…..	});	}}	onPageChanged={page	=>	{	this.setState({	…….	});	}}	onError={error	=>	{	this.setState({	.	…..	});	}}	style={styles.pdf}	/>	Device	tested	(Oneplus	9,
Oneplus	10R,	Android	V12).	Working	on	RealMe,	Samsung	devices	running	on	Android	V11.	You	can’t	perform	that	action	at	this	time.	Not	so	long	ago	UppLabs	was	working	on	a	project	which	key	functionalities	included	a	PDF	generation	on	mobile.	In	this	material,	we’ll	share	some	tips	on	how	to	generate	a	PDF	document	using	React	Native.		The
simplest	way	to	create	a	PDF	document	in	a	React	Native	project	includes	the	use	of	Expo	Print	plugin.	The	first	step	is	to	write	HTML	with	a	sample	of	content	that	should	be	in	our	PDF.	You	can	insert	CSS	styles,	custom	fonts,	images,	links,	etc	to	your	markup.	const	htmlContent	=	`	Pdf	Content	body	{	font-size:	16px;	color:	rgb(255,	196,	0);	}	h1	{
text-align:	center;	}	Hello,	UppLabs!	`;	Then	you	should	write	function,	that	creates	a	PDF	document	with	defined	HTML	markup:	import	*	as	Print	from	'expo-print';	const	htmlContent	=	`	`;	const	createPDF	=	async	(html)	=>	{	try	{	const	{	uri	}	=	await	Print.printToFileAsync({	html	});	return	uri;	}	catch	(err)	{	console.error(err);	}	};	Notice:	
This	function	will	create	a	PDF	file	and	save	it	to	the	application	cache	folder.	So	if	you	want	to	replace	or	copy	this	file,	you	can	use	Expo	Filesystem.	If	you	want	to	save	it	to	the	Gallery	on	your	device,	you	can	use		Expo	MediaLibrary	on	Android	platform	and	Expo	Sharing	on	IOS	platform.	Example	of	function,	that	allows	you	to	create	PDF	and	save
it	to	Gallery:	import	*	as	Print	from	"expo-print";	import	*	as	MediaLibrary	from	"expo-media-library";	import	*	as	Sharing	from	"expo-sharing";	const	createAndSavePDF	=	async	(html)	=>	{	try	{	const	{	uri	}	=	await	Print.printToFileAsync({	html	});	if	(Platform.OS	===	"ios")	{	await	Sharing.shareAsync(uri);	}	else	{	const	permission	=	await
MediaLibrary.requestPermissionsAsync();	if	(permission.granted)	{	await	MediaLibrary.createAssetAsync(uri);	}	}	}	catch	(error)	{	console.error(error);	}	};	You	can	use	this	functionality	in	your	React	Native	components	and	that	will	be	enough	if	you	need	to	create	a	quick	PDF	document	with	simple	content.	If	you’re	using	the	function
Print.printToFileAsync,	the	resulting	PDF	document	might	contain	page	margins	(it	depends	on	WebView	engine).	They	are	set	by	@page	style	block	and	you	can	override	them	in	your	HTML	content		code:	@page	{	margin:	20px;	}	If	you	insert	a	few	content	sections	in	your	HTML	markup,	it	may	not	fit	together	on	the	same	document	page.	In	such
cases,	the	content	of	the	second	section	breaks,	and	part	of	it	is	placed	on	the	next	page	of	the	document.	But	sometimes	such	an	approach	is	unacceptable	when	you	want	to	avoid	breaking	the	content	section.	To	control	the	breaking	of	some	HTML	elements	you	can	use	the	“break-inside”	CSS	property	in	your	HTML	slicing.	section	{	break-inside:
avoid;	}	So,	if	two	sections	are	not	fit	on	the	same	page,	the	second	section	will	be	placed	on	the	next	page	of	the	document	without	breaking.	You	can	use	custom	fonts,	images,	or	other	assets	in	your	HTML	without	any	troubles	if	it’s	placed	remotely.	But	if	you	want	to	use	the	image	from	React	Native	app	assets,	it	may	be	a	problem,	because	such
images	can’t	be	loaded	to	your	document	when	your	React	Native	app	is	built	for	production.	In	such	cases,	you	should	first	copy	the	file	from	assets	to	your	application’s	cache	directory.	Unfortunately,		on	the	IOS	platform,	local	files	can’t	be	loaded	to	PDF	as	well,	so	you	should	convert	the	local	file	to	base64	string.	After	that,	you	can	use	the	URL
of	the	copied	file	(on	Android	platform)	or	base64	string	(on	IOS	Platform)	in	your	HTML	markup.	In	such	cases,	you	can	use	Expo	Asset	and	Expo	ImageManipulator.	Example	of	code,	that	copies	an	image	from	assets	and	converts	it	to	base64	for	IOS	platform	before	using	it	in	a	PDF	document:	import	{	Platform	}	from	"react-native";	import	{	Asset
}	from	"expo-asset";	import	*	as	ImageManipulator	from	"expo-image-manipulator";	const	copyFromAssets	=	async	(asset)	=>	{	try	{	await	Asset.loadAsync(asset);	const	{	localUri	}	=	Asset.fromModule(asset);	return	localUri;	}	catch	(error)	{	console.log(error);	throw	err;	}	};	const	processLocalImageIOS	=	async	(imageUri)	=>	{	try	{	const
uriParts	=	imageUri.split(".");	const	formatPart	=	uriParts[uriParts.length	-	1];	let	format;	if	(formatPart.includes("png"))	{	format	=	"png";	}	else	if	(formatPart.includes("jpg")	||	formatPart.includes("jpeg"))	{	format	=	"jpeg";	}	const	{	base64	}	=	await	ImageManipulator.manipulateAsync(imageUri,	[],	{	format:	format	||	"png",	base64:	true	});
return	`data:image/${format};base64,${base64}`;	}	catch	(error)	{	console.log(error);	throw	error	}	};	const	htmlContent	=	async	()	=>	{	try	{	const	asset	=	require('./assets/logo.png');	let	src	=	await	copyFromAssets(asset);	if(Platform.OS	===	'ios')	{	src	=	await	processLocalImageIOS(src);	}	return	``	}	catch	(error)	{	console.log(error);	}	}
So	after	calling	this	code	you	can	use	the	returned	URL	of	the	asset	image	in	your	PDF	document.	If	you	want	to	place	large	images	in	your	PDF	document,	you	should	optimize	them	before.	It	can	greatly	reduce	the	size	of	your	PDF	document.	Optimizing	the	images	is	useful	when	you	want	to	insert	images	that	are	made	using	the	camera	of	your
device.	To	optimize	images	you	can	use	Expo	ImageManipulator.		Notice:	This	plugin	works	only	with	images	placed	locally	on	the	device.	You	need	to	download	the	image	first.	Example	of	function,	that	optimizes	large	images:	import	*	as	ImageManipulator	from	'expo-image-manipulator';	const	optimizeImage	=	async	(imageUri)	=>	{	try	{	const
{	uri	}	=	await	ImageManipulator.manipulateAsync(imageUri,	[{	resize:	{	width:	600,	},	},],	{	compress:	0.1	},);	return	uri;	}	catch	(error)	{	console.log(error);	return	imageUri;	}	};	upplabs/upplabs-pdf-example	upplabs/upplabs-pdf-	We	hope	this	article	was	useful!	You	can	read	more	about	mobile	development	on	our	website	and	ask	UppLabs	for
help	with	developing	your	mobile	app.	I	am	using	react-native-pdf	in	my	project	,	It	is	working	fine	on	Android	simulator	but	not	working	on	android	device	.	I	have	found	few	warnings	on	command	prompt	while	running	.	warn	The	following	packages	use	deprecated	"rnpm"	config	that	will	stop	working	from	next	release:	on	mobile	it	is	showing	error
"Error	:	CLEARTEXT	communication	to	********.in	not	perimitted	by	network	security	policy	"	PDF	viewer	for	React	Native.	Implemented	with	platform	native	render	functions	for	smallest	deploy	size	impact,	and	restricted	feature	set	to	simplify	integration	with	larger	systems.	Includes	prefabricated	full	document	viewer	based	on	FlatList	and	a
single	page	render	component	to	use	as	a	building	block	for	your	own	fully	custom	viewer.	Uses	android.graphics.pdf.PdfRenderer	on	Android	and	CGPDFDocument	on	iOS.	Unlike	many	native	components	in	the	wild,	react-native-pdf-light	provides	full	implementation	of	React	Native	shadow	nodes.	This	simplifies	UI	development,	since	the
component	actually	knows	its	own	dimensions.	Version	2.x,	adds	render	support	for	annotations	conforming	the	PAS	standard	v1.	If	annotation	support	is	not	needed,	use	1.x	for	slightly	reduced	size.	npm	install	react-native-pdf-light	If	iOS	build	fails	with	Undefined	symbol:	__swift_FORCE_LOAD_...,	add	an	empty	.swift	file	to	the	xcode	project.	import
{	Pdf,	PdfUtil	}	from	'react-native-pdf-light';	PdfUtil.getPageCount(source).then(console.log);	If	creating	your	own	custom	viewer	to	manage	pages:	import	{	PdfView	}	from	'react-native-pdf-light';	For	zoom	support,	install	react-native-gesture-handler	and	use	deep	import.	Note	that	react-native-gesture-handler	is	only	required	to	use	zoom	features;
the	other	display	options	do	not	have	any	dependencies.	import	{	ZoomPdfView	}	from	'react-native-pdf-light/Zoom';	Props:	annotation:	string	Optional:	Path	to	annotation	data.	File	assumed	to	be	PAS	v1.	annotationStr:	string	Optional:	Stringified	JSON	of	annotation	data.	Data	assumed	to	be	PAS	v1.	onError:	(error:	Error)	=>	void	Optional:	Callback
to	handle	errors.	onLoadComplete:	(numberOfPages:	number)	=>	void	Optional:	Callback	to	handle	pdf	load	completion.	Passed	the	page	count	of	the	loaded	pdf.	onMeasurePages:	(measurements:	{	itemHeight:	number,	offset:	number	}[])	=>	void	Optional:	Callback	to	receive	layout	details	of	all	pages.	shrinkToFit:	'never'	|	'portrait'	|	'landscape'	|
'always'	Optional:	Size	pages	such	that	each	page	can	be	displayed	without	cutoff.	Applies	when	device	is	in	the	specified	orientation.	source:	string	The	following	props	are	forwarded	to	the	underlying	FlatList	component:	initialScrollIndex	ListEmptyComponent	onMomentumScrollBegin	onMomentumScrollEnd	onScroll	onScrollBeginDrag
onScrollEndDrag	refreshControl	scrollEventThrottle	Methods:	scrollToIndex(index:	number):	void	Scroll	to	the	specified	page	(0-indexed).	scrollToOffset(offset:	number):	void	Scroll	to	the	specified	offset.	Props:	annotation:	string	Optional:	Path	to	annotation	data.	File	assumed	to	be	PAS	v1.	annotationStr:	string	Optional:	Stringified	JSON	of
annotation	data.	Data	assumed	to	be	PAS	v1.	page:	number	Page	(0-indexed)	of	document	to	display.	resizeMode:	'contain'	|	'fitWidth'	Optional:	How	pdf	page	should	be	scaled	to	fit	in	view	dimensions.	source:	string	style:	ViewStyle	Optional:	View	stylesheet.	Zoom	interactions	compatible	with	react-native-pager-view	in	horizontal	display	mode.
Props:	All	props	from	PdfView	onZoomIn:	()	=>	void	Optional:	Callback	when	view	starts	to	zoom.	onZoomReset:	()	=>	void	Optional:	Callback	when	view	returns	to	non-zoomed	state.	maximumZoom:	number	Optional:	Maximum	allowed	zoom.	Default	2.	refreshControl:	Optional:	A	RefreshControl	component,	used	to	provide	pull-to-refresh
functionality	for	the	internal	ScrollView.	PdfUtil.getPageCount(source:	string):	Promise	Get	the	number	of	pages	of	a	pdf.	PdfUtil.getPageSizes(source:	string):	Promise	Get	the	dimensions	of	every	page.	On	Android	API	level	<	26	when	directly	rendering	pages	with	PdfView	at	a	non-default	aspect	ratio	(e.g.	setting	both	width	and	height	of	the	view
such	that	the	view's	aspect	ratio	does	not	match	the	pdf	page's	aspect	ratio)	if	a	page	in	the	pdf	is	cropped	or	rotated,	the	page	may	render	in	the	wrong	position.	This	is	due	to	a	bug	in	the	native	android.graphics.pdf.PdfRenderer.	(If	you	are	aware	of	a	fix,	pull	requests	welcome.)	See	the	contributing	guide	to	learn	how	to	contribute	to	the	repository
and	the	development	workflow.	MIT	The	Portable	Document	Format	(PDF)	is	one	of	the	most	popular	formats	used	for	documents.	In	this	blog	post,	let’s	check	how	to	show	pdf	files	in	react	native.React	Native	Pdf	is	a	third	party	that	helps	us	to	open	and	read	pdf	files	from	a	URL	or	local	assets	in	react	native.	It	has	important	features	such	as	drag
and	zoom,	password-protected	pdf	support,	etc.	In	short,	you	can	create	a	pdf	viewer	with	this	library.To	make	React	Native	Pdf	work	you	also	need	another	library	react	native	blob	util.	Install	both	libraries	using	the	command	given	below.npm	install	react-native-pdf	react-native-blob-util	--saveAlso,	don’t	forget	to	run	the	pod	install	command	inside
the	ios	folder.On	Android,	open	android/app/build.gradle	and	add	the	following	inside	the	android	{}	tag.packagingOptions	{	pickFirst	'lib/x86/libc++_shared.so'	pickFirst	'lib/x86_64/libjsc.so'	pickFirst	'lib/arm64-v8a/libjsc.so'	pickFirst	'lib/arm64-v8a/libc++_shared.so'	pickFirst	'lib/x86_64/libc++_shared.so'	pickFirst	'lib/armeabi-
v7a/libc++_shared.so'	}Now,	you	can	create	a	simple	pdf	viewer	in	react	native	as	given	below.import	React	from	'react';	import	{StyleSheet,	Dimensions,	View,	Platform}	from	'react-native';	import	Pdf	from	'react-native-pdf';	const	source	=	{	uri:	'	,	cache:	true,	};	const	App	=	()	=>	{	return	({	console.log(`number	of	pages:	${numberOfPages}`);
}}	onPageChanged={(page,	numberOfPages)	=>	{	console.log(`current	page:	${page}`);	}}	onError={error	=>	{	console.log(error);	}}	onPressLink={uri	=>	{	console.log(`Link	presse:	${uri}`);	}}	style={styles.pdf}	/>);	};	export	default	App;	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:	'flex-start',	alignItems:	'center',
marginTop:	25,	},	pdf:	{	flex:	1,	width:	Dimensions.get('window').width,	height:	Dimensions.get('window').height,	},	});	This	‘Pdf’	component	displays	the	PDF	file	and	provides	callbacks	for	various	events,	such	as	when	the	PDF	file	is	completely	loaded,	when	a	page	is	changed,	when	an	error	occurs,	and	when	a	link	is	pressed.The	output	of	this	react
native	pdf	viewer	example	on	Android	is	as	given	below.Following	is	the	output	in	iOS.This	is	just	a	basic	example	and	you	can	go	through	the	official	documentation	of	react	native	pdf	library	to	do	advanced	things.	I	remember	how	was	surprised	when	attempted	to	open	a	link	to	a	PDF	file	on	an	Android	device	in	my	past	React	Native	project.	As
usual	in	the	RN	world,	everything	was	good	on	iOS	but…	on	Android,	I’ve	only	seen	the	message	about	successfully	downloading	the	document	to	the	file	system.	Great!	I’ve	researched	a	little	bit	and	found	that	this	is	not	a	bug	of	react-native-webview	(the	component	for	rendering	web	pages)	itself	but	that	is	how	the	Android	browser	works.	Ok,	let’s
find	out	how	to	fix	it.Proposed	SolutionA	possible	workaround	is	to	parse	the	web	page	and	redirect	links	to	PDF	files	to	a	separate	screen.	This	screen	will	render	the	PDF	file	using	the	react-native-pdf	component.ImplementationAssuming	that	react-navigation	and	react-native-webview	are	already	in	use	in	your	project,	the	first	step	is	to	follow	the
installation	guide	for	react-native-pdf.Next,	set	up	navigation	to	display	web	pages	and	PDF	files	on	separate	screens.	You	can	do	this	in	the	following	files:src/navigation/MainStack.tsxexport	const	MainStackNavigator	=	()	=>	{	return	(({	title:	route.params?.title	})}	/>	({	title:	route.params?.title	})}	/>);};src/screens/pdf/PdfScreen.tsxexport	const
PdfScreen	=	({	route	}:	Props)	=>	{	useEffect(()	=>	{	console.log("PdfScreen",	route.params.url);	},	[route.params.url]);	return	();};*Note	the	line	“trustAllCerts={Platform.OS	===	"ios"”	without	this	pdf	won’t	be	downloaded	on	Android,	here	is	the	issuesrc/screens/pdf/WebScreen.tsxexport	const	WebScreen	=	({	route	}:	Props)	=>	{	return	();};
src/screens/Home/HomeScreen.tsxexport	const	HomeScreen	=	({	navigation	}:	Props)	=>	{	const	onPdfLinkPress	=	useCallback(()	=>	{	navigation.navigate(screenNames.PdfScreen,	{	title:	"dummy.pdf",	url:	"	,	});	},	[navigation]);	const	onWebLinkPress	=	useCallback(()	=>	{	navigation.navigate(screenNames.WebScreen,	{	title:	"GitHub",	url:	"	",
});	},	[navigation]);	const	onWebLinkWithPdfLinksPress	=	useCallback(()	=>	{	navigation.navigate(screenNames.WebScreen,	{	title:	"Link	to	dummy.pdf",	url:	"	});	},	[navigation]);	return	(Open	web	page	Open	pfd	Open	web	page	with	links	to	pdf	files);};At	this	point,	if	you	tap	on	the	“dummy.pdf”	link	in	a	Google	page,	it	will	open	the	PDF	inside
the	WebView	on	iOS	and	download	the	file	on	Android.To	improve	this,	let’s	update	code	of	WebScreenexport	const	WebScreen	=	({	navigation,	route	}:	Props)	=>	{	const	jsCode	=	useMemo(()	=>	`	(function(){	try	{	const	links	=	document.getElementsByTagName("a");	for	(let	link	of	links)	{	const	linkExt	=	link.href.split(".").pop().toLowerCase();	if
(linkExt	===	"pdf")	{	link.onclick	=	()	=>	{	window.ReactNativeWebView.postMessage(JSON.stringify({	pdfLink:	link.href	}));	return	false;	};	}	}	}	catch	(e)	{	window.ReactNativeWebView.postMessage(JSON.stringify({	error:	e.message	}));	console.log(e);	}	})();	`,	[],);	const	onMessage	=	useCallback((event:	WebViewMessageEvent)	=>	{	const
data	=	JSON.parse(event.nativeEvent.data);	if	(data.pdfLink)	{	navigation.navigate(screenNames.PdfScreen,	{	title:	data.pdfLink.split("/").pop(),	url:	data.pdfLink,	});	}	},	[navigation],);	return	();};Here	we	are	injecting	JavaScript	code	into	our	WebView	that	adds	an	onClick	handler	to	all	links	to	PDF	files	on	a	page.	After	clicking	on	those	links	we
send	this	PDF	link	from	the	WebView	JavaScript	context	to	React	Native	context	and	then	we	use	it	to	redirect	the	user	to	a	separate	screen	where	we	are	rendering	the	PDF	document	properly.Now,	when	you	tap	on	the	“dummy.pdf”	link	in	a	Google	page,	the	PDF	file	will	open	in	a	separate	PdfScreen.ConclusionThis	solution	should	help	you	handle
PDF	links	in	WebView	in	your	React	Native	project.	Hope	it	saves	you	some	time	in	the	future,	happy	coding:)PS.	The	code	example	is	available	here.	In	today's	mobile	landscape,	the	ability	to	display	PDF	documents	within	your	application	is	crucial	for	many	use	cases.	Whether	it's	displaying	reports,	invoices,	ebooks,	or	any	other	document	format,
users	expect	a	seamless	experience.	This	blog	post	provides	a	deep	dive	into	using	react-native-pdf	–	a	popular	and	versatile	library	for	rendering	PDFs	in	React	Native	applications.What	is	react-native-pdf?react-native-pdf	is	a	React	Native	component	that	allows	you	to	display	PDF	documents	within	your	mobile	application.	It	supports	various
features	like:Local	and	Remote	PDFs:	Load	PDFs	from	local	file	paths	or	URLs.Zooming	and	Panning:	Allows	users	to	zoom	in	and	pan	around	the	document	for	better	readability.Pagination:	Navigate	through	the	PDF	document	page	by	page.Error	Handling:	Gracefully	handle	errors	during	PDF	loading.Customization:	Offers	a	range	of	props	to
customize	the	appearance	and	behavior	of	the	viewer.Why	Use	react-native-pdf?Cross-Platform	Compatibility:	Works	seamlessly	on	both	iOS	and	Android	platforms.Easy	Integration:	Simple	and	straightforward	installation	and	usage.Highly	Customizable:	Adapt	the	viewer	to	match	your	application's	design.Active	Community:	Benefit	from	a	large
community	and	regular	updates.InstallationFirst,	install	the	react-native-pdf	package	using	npm	or	yarn:npm	install	react-native-pdf	--save	yarn	add	react-native-pdf	After	installation,	you	might	need	to	link	the	native	dependencies.	For	React	Native	versions	0.60	and	above,	auto-linking	should	handle	this	automatically.	However,	if	you	encounter
issues,	you	can	manually	link	them:react-native	link	react-native-pdf	Important	Note:	If	you	are	using	Expo,	the	react-native-pdf	library	requires	you	to	eject	to	the	bare	workflow	as	it	utilizes	native	modules.Basic	UsageHere's	a	basic	example	of	how	to	display	a	PDF	from	a	URL:import	React	from	'react';	import	{	StyleSheet,	View,	Dimensions	}	from
'react-native';	import	Pdf	from	'react-native-pdf';	const	App	=	()	=>	{	const	source	=	{	uri:	'	,	cache:	true,	};	return	();	};	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:	'flex-start',	alignItems:	'center',	marginTop:	25,	},	pdf:	{	flex:	1,	width:	Dimensions.get('window').width,	height:	Dimensions.get('window').height,	},	});	export
default	App;	Explanation:import	Pdf	from	'react-native-pdf';:	Imports	the	Pdf	component	from	the	library.source	object:	Defines	the	source	of	the	PDF.	In	this	example,	it's	a	remote	PDF.	You	can	also	use	a	local	file	path	or	a	bundle	asset.	The	cache:	true	option	tells	the	component	to	cache	the	PDF.	component:	Renders	the	PDF	document.	The	source
prop	specifies	the	PDF	source,	and	the	style	prop	defines	the	styling.Loading	Local	PDFsTo	load	a	PDF	from	your	local	file	system,	you	can	modify	the	source	object.	Here's	an	example:const	source	=	require('./assets/my_document.pdf');	Important:	Ensure	that	your	PDF	file	is	placed	within	your	project's	assets	folder	or	any	other	location	that	your
React	Native	application	can	access.	For	iOS,	you	might	need	to	add	the	PDF	to	your	Xcode	project.Customizing	the	PDF	ViewerThe	react-native-pdf	component	provides	various	props	for	customizing	its	appearance	and	behavior.	Here	are	some	commonly	used	props:style:	Applies	styles	to	the	PDF	viewer	container.source:	Specifies	the	PDF	source
(URL,	local	file	path,	or	base64	string).scale:	Sets	the	initial	zoom	scale.minScale:	Sets	the	minimum	zoom	scale.maxScale:	Sets	the	maximum	zoom	scale.horizontal:	Enables	horizontal	scrolling	(pagination).	Defaults	to	false	for	vertical	scrolling.enablePaging:	Enables	page-by-page	navigation	(only	effective	when	horizontal	is	true).fitPolicy:
Determines	how	the	PDF	should	be	scaled	to	fit	the	container.	Options	are	'width',	'height',	'both'.onLoadComplete:	Callback	function	triggered	when	the	PDF	is	successfully	loaded.onError:	Callback	function	triggered	when	an	error	occurs	during	PDF	loading.onPageChanged:	Callback	function	triggered	when	the	page	changes.onPressLink:	Callback
function	triggered	when	a	link	in	the	PDF	is	pressed.Example	with	Customization:import	React,	{	useState	}	from	'react';	import	{	StyleSheet,	View,	Dimensions,	Text	}	from	'react-native';	import	Pdf	from	'react-native-pdf';	const	App	=	()	=>	{	const	[currentPage,	setCurrentPage]	=	useState(1);	const	[pageCount,	setPageCount]	=	useState(0);	const
source	=	{	uri:	'	,	cache:	true,	};	const	handleLoadComplete	=	(numberOfPages,	filePath)	=>	{	console.log(`PDF	loaded	successfully	with	${numberOfPages}	pages`);	setPageCount(numberOfPages);	};	const	handleError	=	(error)	=>	{	console.error('Error	loading	PDF:',	error);	};	const	handlePageChanged	=	(page,	numberOfPages)	=>	{
console.log(`Current	page:	${page}`);	setCurrentPage(page);	};	return	({currentPage}	/	{pageCount});	};	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:	'flex-start',	alignItems:	'center',	marginTop:	25,	},	pdf:	{	flex:	1,	width:	Dimensions.get('window').width,	height:	Dimensions.get('window').height	-	50,	},	pagination:	{
position:	'absolute',	bottom:	10,	left:	0,	right:	0,	alignItems:	'center',	},	});	export	default	App;	In	this	example:We	added	state	variables	(currentPage,	pageCount)	to	track	the	current	page	and	the	total	number	of	pages.We	implemented	onLoadComplete,	onError,	and	onPageChanged	callback	functions	to	handle	loading	events	and	page	changes.We
enabled	horizontal	paging	(horizontal={true}	and	enablePaging={true}).We	set	minScale	and	maxScale	to	control	the	zoom	levels.We	used	fitPolicy="width"	to	fit	the	PDF	width	to	the	container.We	added	a	simple	pagination	display	at	the	bottom.Troubleshooting	Common	IssuesPDF	Not	Loading:	Double-check	the	PDF	source	URL	or	file	path.
Ensure	that	the	PDF	file	exists	and	is	accessible.	Verify	network	connectivity	if	you're	loading	a	remote	PDF.	Also,	make	sure	the	PDF	is	a	valid	PDF	file.Blank	Screen:	This	can	happen	if	the	PDF	is	corrupted	or	if	the	styling	is	incorrect.	Try	setting	explicit	width	and	height	values	for	the	pdf	style.	Also,	check	the	console	for	any	error	messages.Scaling
Issues:	Experiment	with	the	minScale,	maxScale,	and	fitPolicy	props	to	adjust	the	scaling	behavior.iOS	Issues	with	Local	Files:	Make	sure	the	PDF	is	included	in	your	Xcode	project's	bundle	resources.	Right-click	on	your	project	in	Xcode	->	"Add	Files	to	[Your	Project	Name]"	and	select	the	PDF.	Ensure	"Copy	items	if	needed"	is	checked.Best
PracticesError	Handling:	Always	implement	error	handling	to	gracefully	handle	situations	where	the	PDF	fails	to	load.Loading	Indicators:	Provide	a	loading	indicator	while	the	PDF	is	loading	to	improve	the	user	experience.Caching:	Use	the	cache:	true	option	to	cache	remote	PDFs	for	faster	loading	on	subsequent	visits.Optimize	PDF	Size:	Optimize
your	PDF	files	to	reduce	their	size,	especially	for	mobile	devices.	Smaller	PDFs	load	faster	and	consume	less	bandwidth.Security:	Be	mindful	of	PDF	security,	especially	when	handling	sensitive	information.	Consider	using	encryption	or	password	protection	if	necessary.Advanced	UsageBase64	Encoded	PDFs:	You	can	display	PDFs	from	base64
encoded	strings.const	source	=	{	uri:	'data:application/pdf;base64,...BASE64_ENCODED_STRING...'	};	Programmatic	Control:	You	can	use	the	react-native-pdf's	forwardRef	to	control	the	component	programmatically.	This	allows	you	to	programmatically	scroll	to	a	specific	page,	zoom	in/out,	etc.	(Refer	to	the	library's	documentation	for	specific
methods).Conclusionreact-native-pdf	is	a	powerful	and	versatile	library	for	displaying	PDFs	in	your	React	Native	applications.	By	following	the	steps	outlined	in	this	guide,	you	can	easily	integrate	PDF	viewing	functionality	into	your	mobile	apps	and	customize	the	experience	to	meet	your	specific	needs.	Remember	to	handle	errors,	optimize	PDF	size,
and	consider	security	best	practices	for	a	seamless	and	secure	user	experience.	Experiment	with	different	props	and	configurations	to	create	the	perfect	PDF	viewer	for	your	application!	Good	luck!	#935	In	wonday/react-native-pdf;#934	In	wonday/react-native-pdf;#933	In	wonday/react-native-pdf;#932	In	wonday/react-native-pdf;#931	In
wonday/react-native-pdf;#930	In	wonday/react-native-pdf;#929	In	wonday/react-native-pdf;#925	In	wonday/react-native-pdf;#924	In	wonday/react-native-pdf;#921	In	wonday/react-native-pdf;	You	can’t	perform	that	action	at	this	time.	This	tutorial	compares	two	approaches	for	opening	PDFs	in	React	Native:	react-native-pdf	(free,	open	source)
provides	basic	viewing	with	simple	scrolling	functionality,	while	Nutrient	React	Native	SDK	(commercial)	offers	advanced	features	like	annotations,	form	filling,	and	document	outline	support.	Choose	react-native-pdf	for	simple	viewing	needs	or	Nutrient	for	applications	requiring	comprehensive	document	interaction	capabilities.	React	Native	lets	you
create	mobile	apps	in	JavaScript,	but	instead	of	building	a	cross-platform	app,	you	use	the	same	UI	building	blocks	as	regular	iOS	and	Android	apps.	In	this	post,	you’ll	use	React	Native	to	build	an	app	that	opens	a	PDF	with	the	press	of	a	button.	Additionally,	we’ll	address	common	issues	related	to	the	compatibility	of	React	Native	Expo	with	native
modules	when	integrating	PDF	functionality.	In	the	first	part	of	this	tutorial,	you’ll	use	wonday’s	react-native-pdf	library	to	open	a	PDF	in	an	app.	In	the	second	part,	you’ll	learn	how	to	view	PDFs	using	the	Nutrient	React	Native	PDF	library.	Introduction	to	React	Native	PDF	viewer	A	React	Native	PDF	viewer	is	a	crucial	component	for	any	mobile
application	that	needs	to	display	PDF	files.	It	allows	users	to	view	and	interact	with	PDF	documents	directly	within	the	app,	providing	a	seamless	and	integrated	experience.	With	the	growing	demand	for	mobile	apps	that	can	handle	PDF	files,	incorporating	a	React	Native	PDF	viewer	has	become	a	popular	choice	among	developers.	React	Native	PDF
viewers	come	with	a	variety	of	features	that	enhance	the	user	experience.	These	include	zooming,	scrolling,	and	page	navigation,	making	it	easy	for	users	to	read	and	interact	with	PDF	documents.	Additionally,	they	support	various	PDF	formats,	including	PDF	1.7	and	later	versions,	ensuring	compatibility	with	a	wide	range	of	documents.	Some	of	the
popular	React	Native	PDF	viewers	include	react-native-pdf,	[react-native-pdf-view][]	and	Nutrient	React	Native	PDF	library.	Each	of	these	libraries	offers	unique	features	and	capabilities,	allowing	developers	to	choose	the	one	that	best	fits	their	needs.	When	selecting	a	React	Native	PDF	viewer,	it’s	important	to	consider	factors	such	as	performance,
compatibility,	and	customization	options	to	ensure	it	meets	the	specific	requirements	of	your	app.	Choosing	a	React	Native	PDF	library	Selecting	the	right	React	Native	PDF	library	is	essential	for	ensuring	a	smooth	and	efficient	user	experience.	Here	are	some	key	factors	to	consider	when	choosing	a	React	Native	PDF	library:	Performance	—	Look	for
a	library	that	provides	fast	and	smooth	rendering	of	PDF	files.	This	is	crucial	for	maintaining	a	responsive	and	user-friendly	app.	Compatibility	—	Ensure	that	the	library	is	compatible	with	your	version	of	React	Native	and	supports	the	required	PDF	formats.	This	will	help	avoid	any	integration	issues.	Customization	—	Choose	a	library	that	offers
customization	options	to	fit	your	app’s	design	and	functionality.	This	allows	you	to	tailor	the	PDF	viewer	to	match	your	app’s	aesthetic	and	user	experience.	Security	—	Consider	a	library	that	provides	robust	security	features	to	protect	sensitive	PDF	data.	This	is	especially	important	for	apps	that	handle	confidential	or	personal	information.
Community	support	—	Opt	for	a	library	with	an	active	community	and	good	documentation.	This	can	be	invaluable	for	troubleshooting	and	getting	the	most	out	of	the	library.	Some	popular	React	Native	PDF	libraries	include:	react-native-pdf	—	A	widely	used	library	that	supports	React	Native	0.60	and	above,	known	for	its	reliability	and	extensive
features.	[react-native-pdf-view][]	—	A	lightweight	library	that	provides	fast	and	smooth	rendering	of	PDF	files,	ideal	for	simpler	use	cases.	Nutrient	React	Native	library:	A	powerful,	commercial-grade	PDF	SDK	offering	advanced	functionalities,	such	as	form	filling,	annotation,	digital	signatures,	and	real-time	collaboration.	Nutrient	integrates
smoothly	with	React	Native,	making	it	an	ideal	choice	for	projects	requiring	extensive	PDF	manipulation	capabilities.	By	considering	these	factors,	you	can	choose	the	best	React	Native	PDF	library	for	your	project,	ensuring	a	high-quality	user	experience.	Opening	a	PDF	in	React	Native	with	react-native-pdf	Below	are	the	steps	for	how	to	open	a	PDF
in	React	Native	with	react-native-pdf.	Step	1	—	Installing	the	prerequisites	You’ll	use	yarn	to	install	packages.	If	you	haven’t	yet	installed	it,	please	follow	the	Yarn	installation	guide	to	set	it	up	on	your	system.	To	create	React	Native	apps	from	the	command	line,	you	also	need	to	install	Node.js	and	Watchman	using	Homebrew:	brew	install	node	brew
install	watchman	Then	download	and	install	Android	Studio	and	configure	it	following	instructions	from	the	official	React	Native	guide.	Windows	users	To	manage	Node.js	versions,	you	can	install	Chocolatey,	a	popular	package	manager	for	Windows.	It’s	recommended	to	use	a	long-term	support	(LTS)	version	of	Node.	If	you	want	to	be	able	to	switch
between	different	versions,	you	might	want	to	install	Node	via	nvm-windows,	a	Node	version	manager	for	Windows.	React	Native	also	requires	the	Java	Development	Kit	(JDK),	which	can	be	installed	using	Chocolatey	as	well.	To	do	this,	open	an	administrator	command	prompt	by	right-clicking	Command	Prompt	and	selecting	Run	as	Administrator.
Then,	run	the	following	command:	choco	install	-y	nodejs-lts	openjdk11	If	you’re	using	the	latest	version	of	the	JDK,	you’ll	need	to	change	the	Gradle	version	of	your	project	so	it	can	recognize	the	JDK.	You	can	do	that	by	going	to	{project	root	folder}/android/gradle/wrapper/gradle-wrapper.properties	and	changing	the	distributionUrl	value	to	upgrade
the	Gradle	version.	Step	2	—	Creating	a	new	React	Native	app	You	can	use	react-native	to	create	a	new	React	Native	app	from	the	command	line.	This	example	uses	the	name	OpeningaPDF	for	the	app:	npx	react-native	init	OpeningaPDF	npx	is	the	npm	package	runner.	You	can	read	more	about	it	here.	For	the	rest	of	the	tutorial,	you’ll	work	in
OpeningaPDF:	Step	3	—	Installing	Dependencies	You’ll	use	react-navigation	components	so	that	you	can	switch	from	one	view	to	another	in	your	app:	yarn	add	@react-navigation/native	@react-navigation/native-stack	react-native-screens	react-native-safe-area-context	Next,	add	react-native-pdf,	which	includes	a	Pdf	component:	yarn	add	react-native-
pdfStep	4	—	Downloading	a	PDF	document	You	can	download	a	sample	PDF	document:	curl	-o	Document.pdf	Don’t	forget	to	move	the	document	to	the	required	folder	after	downloading	it.	For	iOS	Move	or	copy	the	document	to	ios/Document.pdf.	Open	the	iOS	project	ios/OpeningaPDF.xcworkspace	in	Xcode	and	add	the	document	to	root	of	the
OpeningaPDF	project:	For	Android	Move	or	copy	the	document	to	android/app/src/main/assets/Document.pdf:	cp	Document.pdf	android/app/src/main/assetsStep	5	—	Writing	the	app	Now	you	can	start	implementing	your	app.	First,	import	all	the	required	packages	and	initialize	your	navigation	stack	in	App.js:	import	React	from	'react';	import	Pdf
from	'react-native-pdf';	import	{	Dimensions,	StyleSheet,	View,	Button,	Platform,	}	from	'react-native';	import	{	NavigationContainer	}	from	'@react-navigation/native';	import	{	createNativeStackNavigator	}	from	'@react-navigation/native-stack';	const	DOCUMENT	=	Platform.OS	===	'ios'	?	require('./Document.pdf')	:
'file:///android_asset/Document.pdf';	const	PdfScreen	=	()	=>	{	return	;	};	const	HomeScreen	=	({	navigation	})	=>	{	return	(navigation.navigate('Pdf')}	title="Open	PDF"	/>);	};	const	Stack	=	createNativeStackNavigator();	const	App	=	()	=>	{	return	();	};	export	default	App;	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:
'center',	alignItems:	'center',	},	pdf:	{	flex:	1,	width:	Dimensions.get('window').width,	},	});	HomeScreen	contains	an	Open	PDF	button	that	navigates	to	PdfScreen.	You	need	to	put	a	Document.pdf	file	into	the	same	path	as	App.js	so	that	PdfScreen	can	show	it.	Next,	define	your	App,	which	renders	your	navigation	stack:	const	App	=	()	=>	{	return	();
};	export	default	App;	At	the	end	of	App.js,	define	your	styles:	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:	'center',	alignItems:	'center',	},	pdf:	{	flex:	1,	width:	Dimensions.get('window').width,	},	});	Center	the	Open	PDF	button	and	allow	the	PDF	to	fill	the	entire	screen.	The	image	below	shows	how	it	looks	on	iOS.	The	image
below	shows	how	it	looks	on	Android.	You	can	find	the	complete	content	of	App.js	on	GitHub.	Now,	you	can	tap	a	button	and	scroll	through	a	PDF	document.	However,	you	can’t	do	anything	else;	there’s	no	zooming,	and	there	are	no	annotations.	You	only	have	the	scrolling	view	mode.	But	that’s	where	Nutrient	comes	in:	It	includes	all	of	these	features
—	and	more	—	without	you	having	to	configure	anything.	Opening	a	PDF	with	Nutrient	React	Native	PDF	library	To	start,	follow	the	integration	guide	for	iOS	and	Android.	Then,	add	a	second	button	to	HomeScreen	that	opens	a	PDF	with	Nutrient:	var	PSPDFKit	=	NativeModules.PSPDFKit;	PSPDFKit.setLicenseKey(null);	//	Or	your	valid	license	keys
using	`setLicenseKeys`.	const	DOCUMENT	=	Platform.OS	===	'ios'	?	require('./Document.pdf')	:	{	uri:	'bundle-assets://Document.pdf'	};	//	Simple	screen	containing	an	Open	PDF	button.	class	HomeScreen	extends	Component	{	_presentPSPDFKit()	{	PSPDFKit.present(DOCUMENT,	{	pageTransition:	'scrollContinuous',	scrollDirection:	'vertical',	});	}
static	navigationOptions	=	{	title:	'Home',	};	render()	{	const	{	navigate	}	=	this.props.navigation;	return	(navigate('Pdf')}	title="Open	PDF	with	react-native-pdf"	/>);	}	}	All	you	need	is	PSPDFKit.present('document.pdf')	and	you	can	view	a	PDF	in	Nutrient.	Not	only	that,	but	you	can	also	zoom,	create	annotations,	look	at	the	document’s	outline,	and
lots	of	other	things.	Additionally,	you	can	customize	the	PDF	viewer	by	passing	a	dictionary	to	PSPDFKit.present.	Now,	here’s	the	React	Native	app	powered	by	Nutrient,	as	seen	on	iOS.	And	here’s	the	same	thing,	only	on	Android.	You	can	find	the	source	code	for	the	entire	project	on	GitHub.	Troubleshooting	common	issues	When	working	with	React
Native	PDF	viewers,	you	may	encounter	some	common	issues.	Here	are	some	troubleshooting	tips	to	help	you	resolve	them:	PDF	file	not	loading	—	Ensure	that	the	PDF	file	path	is	correct	and	that	the	file	is	not	corrupted	or	damaged.	Double-check	the	file	location	and	format	to	ensure	it	is	accessible.	PDF	viewer	not	rendering	—	Verify	that	your
React	Native	version	is	compatible	with	the	PDF	viewer	library.	Ensure	that	the	library	is	properly	configured	and	initialized	in	your	project.	PDF	viewer	crashing	—	Check	the	device’s	memory	and	storage	capacity	to	ensure	it	can	handle	the	PDF	file	size.	Look	for	any	memory	leaks	or	performance	issues	in	the	PDF	viewer.	PDF	viewer	not
responding	—	Ensure	that	the	app’s	UI	thread	is	not	blocked	or	frozen.	Verify	that	the	PDF	viewer	is	properly	configured	and	initialized,	and	check	for	any	performance	bottlenecks.	By	following	these	troubleshooting	tips,	you	can	quickly	identify	and	resolve	common	issues	with	your	React	Native	PDF	viewer,	ensuring	a	smooth	and	seamless
experience	for	your	users.	Conclusion	As	you	saw,	adding	PDF	support	to	your	app	with	the	react-native-pdf	package	is	a	breeze.	However,	if	your	React	Native	project	requires	more	advanced	PDF	functionality,	such	as	PDF	annotations	or	PDF	form	filling,	you	should	definitely	look	into	using	a	commercial	library.	Our	React	Native	PDF	SDK	comes
with	more	than	30	out-of-the-box	features	and	has	well-documented	APIs	to	handle	advanced	use	cases.	Try	out	our	PDF	library	using	our	free	trial,	and	check	out	our	demos	to	see	what’s	possible.	Nutrient	also	comes	with	great	customer	support,	so	please	reach	out	to	us	if	you	have	any	questions	about	our	React	Native	integration.	FAQ	How	can	I
open	a	PDF	in	React	Native?	You	can	open	a	PDF	in	React	Native	by	setting	up	a	React	Native	project,	installing	the	react-native-pdf	library	or	Nutrient,	adding	a	PDF	document	to	your	project,	and	implementing	a	component	to	display	the	PDF.	What	are	the	steps	to	set	up	a	React	Native	PDF	viewer?	To	set	up	a	React	Native	PDF	viewer,	create	a
new	React	Native	app,	install	necessary	dependencies	(react-native-pdf	or	Nutrient),	add	a	PDF	document	to	the	project,	and	write	code	to	render	the	PDF	in	a	component.	You	can’t	perform	that	action	at	this	time.	Library	for	displaying	PDF	documents	in	react-native	android	-	uses	Android	PdfViewer.	Targets	minSdkVersion	21	(required	by
setClipToOutline)	and	above.	By	default	stable	version	2.8.2	is	used.	It's	also	possible	to	override	it	and	use	3.1.0-beta.1	(this	version	allows	to	handle	links,	etc.	and	will	be	used	when	Android	PdfViewer	stable	version	is	released).	To	change	the	version,	define	it	in	your	build	file:	buildscript	{	ext	{	...	pdfViewerVersion	=	"3.1.0-beta.1"	}	...	}	Barteksc
PdfViewer	uses	JCenter,	which	should	be	read-only	indefinitely,	but	in	case	the	host	project	does	not	use	it,	there	is	a	possibility	to	use	mhiew/AndroidPdfViewer	which	is	a	fork	published	on	mavenCentral.	To	use	it,	define	the	following	configuration	in	your	gradle	script:	buildscript	{	ext	{	...	pdfViewerVersion	=	"3.2.0-beta.1"	pdfViewerRepo	=
"com.github.mhiew"	}	...	}	ios	-	uses	WKWebView.	Targets	iOS9.0	and	above	zero	NPM	dependencies	Getting	started	$	npm	install	react-native-view-pdf	--save	Linking	From	RN	0.60	there	is	no	need	to	link	-	Native	Modules	are	now	Autolinked	Mostly	automatic	installation	$	react-native	link	If	it	doesn't	work	follow	the	official	react	native
documentation	Using	CocoaPods	In	your	Xcode	project	directory	open	Podfile	and	add	the	following	line:	pod	'RNPDF',	:path	=>	'../node_modules/react-native-view-pdf'	And	install:	pod	install	Android	Open	up	android/app/src/main/java/[...]/MainApplication.java	Add	import	com.rumax.reactnative.pdfviewer.PDFViewPackage;	to	the	imports	at	the	top
of	the	file	Add	new	PDFViewPackage()	to	the	list	returned	by	the	getPackages()	method	Append	the	following	lines	to	android/settings.gradle:	include	':react-native-view-pdf'	project(':react-native-view-pdf').projectDir	=	new	File(rootProject.projectDir,	'../node_modules/react-native-view-pdf/android')	Insert	the	following	lines	inside	the	dependencies
block	in	android/app/build.gradle:	compile	project(':react-native-view-pdf')	Note	for	Android	The	Android	project	tries	to	retrieve	the	following	properties:	compileSdkVersion	buildToolsVersion	minSdkVersion	targetSdkVersion	from	the	ext	object	if	you	have	one	defined	in	your	Android's	project	root	(you	can	read	more	about	it	here).	If	not,	it	falls
back	to	its	current	versions	(check	the	gradle	file	for	additional	information).	Windows	ReactWindows	N/A	Demo	Android	iOS	Quick	Start	//	With	Flow	type	annotations	(import	PDFView	from	'react-native-view-pdf';	//	Without	Flow	type	annotations	//	import	PDFView	from	'react-native-view-pdf/lib/index';	const	resources	=	{	file:	Platform.OS	===
'ios'	?	'downloadedDocument.pdf'	:	'/sdcard/Download/downloadedDocument.pdf',	url:	'	,	base64:	'JVBERi0xLjMKJcfs...',	};	export	default	class	App	extends	React.Component	{	render()	{	const	resourceType	=	'url';	return	({/*	Some	Controls	to	change	PDF	resource	*/}	console.log(`PDF	rendered	from	${resourceType}`)}	onError={(error)	=>
console.log('Cannot	render	PDF',	error)}	/>);	}	}	Use	the	demo	project	to:	Test	the	component	on	both	android	and	iOS	Render	PDF	using	URL,	BASE64	data	or	local	file	Handle	error	state	Props	Name	Android	iOS	Description	resource	✓	✓	A	resource	to	render.	It's	possible	to	render	PDF	from	file,	url	(should	be	encoded)	or	base64	resourceType	✓
✓	Should	correspond	to	resource	and	can	be:	file,	url	or	base64	fileFrom	✗	✓	iOS	ONLY:	In	case	if	resourceType	is	set	to	file,	there	are	different	way	to	search	for	it	on	iOS	file	system.	Currently	documentsDirectory,	libraryDirectory,	cachesDirectory,	tempDirectory	and	bundle	are	supported.	onLoad	✓	✓	Callback	that	is	triggered	when	loading	is
completed	onError	✓	✓	Callback	that	is	triggered	when	loading	has	failed.	And	error	is	provided	as	a	function	parameter	style	✓	✓	A	style	fadeInDuration	✓	✓	Fade	in	duration	(in	ms,	defaults	to	0.0)	to	smoothly	fade	the	webview	into	view	when	pdf	loading	is	completed	enableAnnotations	✓	✗	Android	ONLY:	Boolean	to	enable	Android	view
annotations	(default	is	false).	urlProps	✓	✓	Extended	properties	for	url	type	that	allows	to	specify	HTTP	Method,	HTTP	headers	and	HTTP	body	onPageChanged	✓	✗	Callback	that	is	invoked	when	page	is	changed.	Provides	active	page	and	total	pages	information	onScrolled	✓	✓	Callback	that	is	invoked	when	PDF	is	scrolled.	Provides	offset	value	in	a
range	between	0	and	1.	Currently	only	0	and	1	are	supported.	Methods	reload	Allows	to	reload	the	PDF	document.	This	can	be	useful	in	such	cases	as	network	issues,	document	is	expired,	etc.	To	reload	the	document	you	will	need	a	ref	to	the	component:	...	render()	{	return	(this._pdfRed	=	ref}	/>);	}	And	trigger	it	by	calling	reloadPDF:	reloadPDF
=	async	()	=>	{	const	pdfRef	=	this._pdfRef;	if	(!pdfRef)	{	return;	}	try	{	await	pdfRef.reload();	}	catch	(err)	{	console.err(err.message);	}	}	Or	check	the	demo	project	which	also	includes	this	functionality.	Development	tips	On	android	for	the	file	type	it	is	required	to	request	permissions	to	read/write.	You	can	get	more	information	in
PermissionsAndroid	section	from	react	native	or	Request	App	Permissions	from	android	documentation.	Demo	project	provides	an	example	how	to	implement	it	using	Java,	check	the	MainActivity.java	and	AndroidManifest.xml	files.	Before	trying	file	type	in	demo	project,	open	sdcard/Download	folder	in	Device	File	Explorer	and	store	some
downloadedDocument.pdf	document	that	you	want	to	render.	On	iOS,	when	using	resource	file	you	can	specify	where	to	look	for	the	file	with	fileFrom.	If	you	do	not	pass	any	value,	the	component	will	lookup	in	two	places.	First,	it	will	attempt	to	locate	the	file	in	the	Bundle.	If	it	cannot	locate	it	there,	it	will	search	the	Documents	directory.	For	more
information	on	the	iOS	filesystem	access	at	runtime	of	an	application	please	refer	the	official	documentation.	Note	here	that	the	resource	will	always	need	to	be	a	relative	path	from	the	Documents	directory	for	example	and	also	do	NOT	put	the	scheme	in	the	path	(so	no	file://.....).	You	can	find	an	example	of	both	usage	of	the	Bundle	and	Documents
directory	for	rendering	a	pdf	from	file	on	iOS	in	the	demo	project.	In	demo	project	you	can	also	run	the	simple	server	to	serve	PDF	file.	To	do	this	navigate	to	demo/utils/	and	start	the	server	node	server.js.	(Do	not	forget	to	set	proper	IP	adress	of	the	server	in	demo/App.js)	License	MIT	Authors	Other	information	-keep	class	com.shockwave.**	❤
6.7.7	•	Public	•	Published	4	months	ago	ReadmeCode	Beta2	Dependencies37	Dependents96	Versions	A	react	native	PDF	view	component	(cross-platform	support)	read	a	PDF	from	url,	blob,	local	file	or	asset	and	can	cache	it.	display	horizontally	or	vertically	drag	and	zoom	double	tap	for	zoom	support	password	protected	pdf	jump	to	a	specific	page	in
the	pdf	We	use	react-native-blob-util	to	handle	file	system	access	in	this	package,	So	you	should	install	react-native-pdf	and	react-native-blob-util	The	table	below	shows	the	supported	versions	of	React	Native	and	react-native-blob-util	for	different	versions	of	react-native-pdf.	React	Native	0.4x	-	0.56	0.57	0.60+	0.62+	0.62+	react-native-pdf	4.x.x	-
5.0.x	5.0.9+	6.0.0+	6.2.0+	6.4.0+	react-native-blob-util	0.13.7+		Expo:	This	package	is	not	available	in	the	Expo	Go	app.	Learn	how	you	can	use	this	package	in	Custom	Dev	Clients	via	the	out-of-tree	Expo	Config	Plugin.	Example:	with-pdf.	#	Using	npm	npm	install	react-native-pdf	react-native-blob-util	--save	#	or	using	yarn:	yarn	add	react-native-pdf
react-native-blob-util	Then	follow	the	instructions	for	your	platform	to	link	react-native-pdf	into	your	project:	iOS	details	React	Native	0.60	and	above	Run	pod	install	in	the	ios	directory.	Linking	is	not	required	in	React	Native	0.60	and	above.	React	Native	0.59	and	below	react-native	link	react-native-blob-util	react-native	link	react-native-pdf	Android
details	If	you	use	RN	0.59.0	and	above,	please	add	following	to	your	android/app/build.gradle**	android	{	+	packagingOptions	{	+	pickFirst	'lib/x86/libc++_shared.so'	+	pickFirst	'lib/x86_64/libjsc.so'	+	pickFirst	'lib/arm64-v8a/libjsc.so'	+	pickFirst	'lib/arm64-v8a/libc++_shared.so'	+	pickFirst	'lib/x86_64/libc++_shared.so'	+	pickFirst	'lib/armeabi-
v7a/libc++_shared.so'	+	}	}	React	Native	0.59.0	and	below	react-native	link	react-native-blob-util	react-native	link	react-native-pdf	Windows	details	Open	your	solution	in	Visual	Studio	2019	(eg.	windows\yourapp.sln)	Right-click	Solution	icon	in	Solution	Explorer	>	Add	>	Existing	Project...	If	running	RNW	0.62:	add	node_modules\react-native-
pdf\windows\RCTPdf\RCTPdf.vcxproj	If	running	RNW	0.62:	add	node_modules\react-native-blob-util\windows\ReactNativeBlobUtil\ReactNativeBlobUtil.vcxproj	Right-click	main	application	project	>	Add	>	Reference...	Select	progress-view	and	in	Solution	Projects	If	running	0.62,	also	select	RCTPdf	and	ReactNativeBlobUtil	In	app	pch.h	add	#include
"winrt/RCTPdf.h"	If	running	0.62,	also	select	#include	"winrt/ReactNativeBlobUtil.h"	In	App.cpp	add	PackageProviders().Append(winrt::progress_view::ReactPackageProvider());	before	InitializeComponent();	If	running	RNW	0.62,	also	add	PackageProviders().Append(winrt::RCTPdf::ReactPackageProvider());	and
PackageProviders().Append(winrt::ReactNativeBlobUtil::ReactPackageProvider());	To	add	a	test.pdf	like	in	the	example	add:	true	in	the	app	.vcxproj	file,	before	.	FAQ	details	Q1.	After	installation	and	running,	I	can	not	see	the	pdf	file.	A1:	maybe	you	forgot	to	excute	react-native	link	or	it	does	not	run	correctly.	You	can	add	it	manually.	For	detail	you
can	see	the	issue	#24	and	#2	Q2.	When	running,	it	shows	'Pdf'	has	no	propType	for	native	prop	RCTPdf.acessibilityLabel	of	native	type	'String'	A2.	Your	react-native	version	is	too	old,	please	upgrade	it	to	0.47.0+	see	also	#39	Q3.	When	I	run	the	example	app	I	get	a	white/gray	screen	/	the	loading	bar	isn't	progressing	.	A3.	Check	your	uri,	if	you	hit	a
pdf	that	is	hosted	on	a	http	you	will	need	to	do	the	following:	iOS:	add	an	exception	for	the	server	hosting	the	pdf	in	the	ios	info.plist.	Here	is	an	example	:	NSAppTransportSecurity	NSExceptionDomains	yourserver.com	NSIncludesSubdomains	NSTemporaryExceptionAllowsInsecureHTTPLoads	NSTemporaryExceptionMinimumTLSVersion	TLSv1.1
Android:	see	here	Q4.	why	doesn't	it	work	with	react	native	expo?.	A4.	Expo	does	not	support	native	module.	you	can	read	more	expo	caveats	here	Q5.	Why	can't	I	run	the	iOS	example?	'Failed	to	build	iOS	project.	We	ran	"xcodebuild"	command	but	it	exited	with	error	code	65.'	A5.	Run	the	following	commands	in	the	project	folder	(e.g.	react-native-
pdf/example)	to	ensure	that	all	dependencies	are	available:	yarn	install	(or	npm	install)	cd	ios	pod	install	cd	..	react-native	run-ios	ChangeLog	details	v6.7.7	1.	Added:	add	support	for	customizable	scroll	indicators	in	PdfView	component	(#904)	2.	Fixed:	fix	field	values	not	being	visible	on	android.	issue	#864		(#896)	v6.7.6	Fixed:	Add	missing
'enableDoubleTapZoom'	to	fabric	codegen	source	(#832)	Fixed:	added	missing	'scrollEnabled'	prop	(#842)	Fixed:	java.lang.IllegalStateException:	Tried	to	access	a	JS	module	before	the	React	instance	was	fully	set	up	(#840)	Fixed:	an	issue	that	crashes	when	cancel	is	not	present	(#852)	Added:	add	load	method	(#861)	Fixed:	encoded	accented
character	is	decoded	incorrectly	(#873)	Fixed:	enableDoubleTapZoom	bugfix	v6.7.5	Added	progressContainerStyle	prop	Improved:	Added	enableDoubleTapZoom	option	Fixed:	Fix	app	crash	with	this.lastRNBFTask.cancel	is	not	a	function	(#827)	Fixed:	Remove	override	to	fix	'no	matching	methods	to	override'	error	(#822)	v6.7.4	Fixed:	fix	Android
crash	issue	v6.7.3	Fixed:	fix	android	package	name	v6.7.2	Fixed:	fix	iOS	double	tap	zoom	scrolling	Fixed:	fix	RN	73	compatibility	Fixed:	bump	crypto-js	to	avoid	critical	vulnerability	v6.7.1	Fixed:	fix	ios	project	setting	Fixed:	fix	typo	in	RNPDFPdfViewManagerInterface	interface	causing	android	build	error	v6.7.0	Fixed:	fix(iOS):	center	page	at	tap	point
after	double	tap	to	zoom	Fixed:	add	PDFKit	to	podspec	to	make	ios	compile	Improved:	Update	build.gradle	to	support	RN	0.71	on	new	arch	Fixed:	fix	some	small	bugs	and	documents.	v6.6.2	Fixed:	Migrate	to	ViewPropTypes	exported	from	'deprecated-react-native-prop-types'	Added:	Decode	File	Path	for	iOS	Improved:	prefer	current	page	for
calculating	scale	factor	on	fit	v6.6.1	depresed	v6.6.0	depresed	Fixed:	Migrate	to	ViewPropTypes	exported	from	'deprecated-react-native-prop-types'	Added:	Decode	File	Path	for	iOS	Improved:	prefer	current	page	for	calculating	scale	factor	on	fit	Improved:	Typescript	version	source	v6.5.0	Fix:	replace	mavenCentral	with	maven	Breaking
Change(Android):	replace	deprecated	repository:	jcenter()	Fix:	loading	progress	Add:	Typed	"source"	prop	Remove:	dependency	to	fbjs	v6.4.0	Remove	sample	for	reducing	NPM	package	size	Add	support	for	setting	a	filename	for	the	cached	pdf	file	Use	react-native-blob-util	instead	of	rn-fetch-blob	Add	blob	support	remove	progress-view	dependency
v6.3.0	Add	windows	support	Fixed	some	bugs	[more]	/**	*	Copyright	(c)	2017-present,	Wonday	(@wonday.org)	*	All	rights	reserved.	*	*	This	source	code	is	licensed	under	the	MIT-style	license	found	in	the	*	LICENSE	file	in	the	root	directory	of	this	source	tree.	*/	import	React	from	'react';	import	{	StyleSheet,	Dimensions,	View	}	from	'react-native';
import	Pdf	from	'react-native-pdf';	export	default	class	PDFExample	extends	React.Component	{	render()	{	const	source	=	{	uri:	'	,	cache:	true	};	//const	source	=	require('./test.pdf');	//	ios	only	//const	source	=	{uri:'bundle-assets://test.pdf'	};	//const	source	=	{uri:'file:///sdcard/test.pdf'};	//const	source	=
{uri:"data:application/pdf;base64,JVBERi0xLjcKJc..."};	//const	source	=	{uri:"content://com.example.blobs/xxxxxxxx-...?offset=0&size=xxx"};	//const	source	=	{uri:"blob:xxxxxxxx-...?offset=0&size=xxx"};	return	({	console.log(`Number	of	pages:	${numberOfPages}`);	}}	onPageChanged={(page,numberOfPages)	=>	{	console.log(`Current	page:
${page}`);	}}	onError={(error)	=>	{	console.log(error);	}}	onPressLink={(uri)	=>	{	console.log(`Link	pressed:	${uri}`);	}}	style={styles.pdf}/>)	}	}	const	styles	=	StyleSheet.create({	container:	{	flex:	1,	justifyContent:	'flex-start',	alignItems:	'center',	marginTop:	25,	},	pdf:	{	flex:1,	width:Dimensions.get('window').width,
height:Dimensions.get('window').height,	}	});	Property	Type	Default	Description	iOS	Android	Windows	FirstRelease	source	object	not	null	PDF	source	like	{uri:xxx,	cache:false}.	see	the	following	for	detail.	✔	✔	✔

