
	

https://jaxaxuziwa.tugoduzak.com/521335535759517673506347326102067408948203?posifuvezulefewavugeve=zomaseboxoluvukifupusijaruvafonanobexafabofagugakazoxiboderekavarevekononagosifojinuxixagapumifuvekazujikerafulokadelozulowugoviluxewizugutigewojonemogudizovafatinopilakugidofizopirapesakiroramoneziso&utm_term=uml+sequence+diagram+example+with+code&tujedupiputekuzutajeselukupinoweb=vulofazogugoxasupuzivofogatafodogotavibubuzowanatozibubapuxekajifudivabopeguxenujanikatuvujopuxinipusiduledekejipaxuweruvoxikopuseki

Visual	Paradigm	Community	-	the	Best	#1	FREE	Sequence	Diagram	Tool	in	the	market	UML	modelling	tool	free	for	all	sorts	of	non-commercial	purpose.	Supporting	the	13	UML	2.x	diagrams	and	ERD	diagram.	We	are	adopted	by	over	1	Million	installations	around	the	globe,	and	is	still	growing.	Sequence	Diagram	is	a	model	describing	how	groups	of
objects	collaborate	in	some	behavior	over	time	which	captures	the	behavior	of	a	single	use	case.	It	often	shows	objects	and	the	messages	that	are	passed	between	these	objects	for	the	particular	use	case	which	can	be	used	to	model:	A	model	describing	how	groups	of	objects	collaborate	in	some	behavior	over	time.	The	diagram	captures	the	behavior
of	a	single	use	case.	It	shows	objects	and	the	messages	that	are	passed	between	these	objects	for	the	particular	use	case.	Sequence	Diagrams	are	interaction	diagrams	that	detail	how	operations	are	carried	out.	Interaction	diagrams	model	important	runtime	interactions	between	the	parts	that	make	up	the	system	Model	high-level	interaction	between
active	objects	in	a	system	Model	the	interaction	between	object	instances	within	a	collaboration	that	realizes	a	use	case	Model	the	interaction	between	objects	within	a	collaboration	that	realizes	an	operation	Either	model	generic	interactions	(showing	all	possible	paths	through	the	interaction)	or	specific	instances	of	a	interaction	(showing	just	one
path	through	the	interaction	Capture	the	interaction	that	takes	place	in	a	collaboration	that	either	realizes	a	use	case	or	an	operation	(instance	diagrams	or	generic	diagrams)	Capture	high-level	interactions	between	user	of	the	system	and	the	system,	between	the	system	and	other	systems,	or	between	subsystems	(sometimes	known	as	system
sequence	diagrams)	Sequence	Diagram	is	an	interaction	diagram	that	details	how	operations	are	carried	out	--	what	messages	are	sent	and	when.	Sequence	diagrams	are	organized	according	to	time.	The	time	progresses	as	you	go	down	the	page.	The	objects	involved	in	the	operation	are	listed	from	left	to	right	according	to	when	they	take	part	in	the
message	sequence.	Below	is	a	sequence	diagram	for	making	a	hotel	reservation.	The	object	initiating	the	sequence	of	messages	is	a	Reservation	window.	Note	That:	Class	and	object	diagrams	are	static	model	views.	Interaction	diagrams	are	dynamic.	They	describe	how	objects	collaborate.	A	scenario	is	one	path	or	flow	through	a	use	case	that
describes	a	sequence	of	events	that	occurs	during	one	particular	execution	of	a	system.	Sequence	diagrams	often	be	used	to	assist	for	elaborating	use	cases	by	emphasizing	message	exchange.	The	various	scenarios	of	a	use	case	can	be	depicted	by	a	sequence	diagram.	The	representation	is	restricted	to	the	message	exchange	within	each	business
use	case.	Generally,	the	level	of	detail	for	these	sequence	diagrams	is	higher	than	for	sequence	diagrams	spanning	use	cases.	A	use	case	is	a	collection	of	interactions	between	external	actors	and	a	system.	In	UML,	a	use	case	is	"the	specification	of	a	sequence	of	actions,	including	variants,	that	a	system	(or	entity)	can	perform,	interacting	with	actors
of	the	system."	Typically	each	use	case	includes	a	primary	scenario	(or	main	course	of	events)	and	zero	or	more	secondary	scenarios	that	are	alternative	courses	of	events	to	the	primary	scenario	User	requirements	are	captured	as	use	cases	that	are	refined	into	scenarios.	A	use	case	is	a	collection	of	interactions	between	external	actors	and	a	system.
In	UML,	a	use	case	is:	"the	specification	of	a	sequence	of	actions,	including	variants,	that	a	system	(or	entity)	can	perform,	interacting	with	actors	of	the	system."	A	scenario	is	one	path	or	flow	through	a	use	case	that	describes	a	sequence	of	events	that	occurs	during	one	particular	execution	of	a	system	which	is	often	represented	by	a	sequence
diagram.	Sequence	diagrams	can	be	somewhat	close	to	the	code	level,	so	why	not	just	code	up	that	algorithm	rather	than	drawing	it	as	a	sequence	diagram?	A	good	sequence	diagram	is	still	a	bit	above	the	level	of	the	real	code	Sequence	diagrams	are	language	neutral	Non-coders	can	do	sequence	diagrams	Easier	to	do	sequence	diagrams	as	a	team
Can	be	used	for	testing	and/or	UX	Wireframing	End-to-End	Enterprise	Architecture	tool	suite	that	supports	TOGAF,	ArchiMate,	PMBOK	process	map	and	more	Read	More	❯	Agile	development	tools	like	user	story	map	and	sprint,	Customer	Journey	Map	and	a	wide	range	of	project	management	diagrams	Read	More	❯	Essential	development	tools	for
modeling	(UML,	BPMN,	ERD,	DFD,	etc),	wireframing,	code	and	DB	engineering	tools,	etc	Read	More	❯	An	award-winning	modeling	software	that	features	UML,	BPMN,	ERD,	DFD	and	more.	Visual	Paradigm	Modeler	makes	modeling	easy	and	fast.	Read	More	❯	Who's	using	this	great	UML	software?	Visual	Paradigm	are	trusted	by	over	230,000
people	in	companies	ranging	from	small	business	to	Fortune	500	companies,	universities	and	government	units.	Capture	inspiration,	stimulate	creativity,	and	allow	ideas	to	grow	and	flow	freely.	What	you	remember,	what	you	see,	what	you	think,	and	what	you	understand	can	go	to	infinity	and	beyond,	and	appear	vividly	on	canvas.	GitMind	helps	to
complete	the	connection,	flow,	and	co-creation	of	ideas,	and	accumulate	&	refine	valuable	ideas,	empowering	all	to	create	their	own	metaverse	of	ideas.	UML	sequence	diagram	is	particularly	helpful	in	identifying	the	requirements	of	a	system	including	all	the	functionalities.	It’s	easy	to	create	sequence	diagram	as	it	only	consists	of	basic	shapes	such
as	rectangles,	lines,	and	arrows.	You	can	work	with	it	with	simple	tools	like	Word.	There	are	also	online	tools	to	help	you	get	this	job	done	or	you	can	use	advanced	solutions	like	Visio.	Find	out	more	useful	methods	by	reading	through	this	article.7	Practical	Methods	to	Make	Sequence	DiagramCreate	Sequence	Diagram	OnlineOne	of	the	most	popular
solutions	to	create	sequence	diagram	online	is	GitMind.	The	tool	is	surprisingly	simple	with	lots	of	amazing	features	everyone	may	enjoy	using.	It	comes	with	free	and	downloadable	templates	for	easy	diagramming.	Also,	it	has	an	intuitive	editor	that	grants	you	access	to	its	shapes	library	for	different	types	of	UML	diagrams.	Moreover,	you	can	export
maps	to	image	files	or	convert	them	into	PDF	files.	Follow	these	simple	steps	to	make	a	sequence	diagram	online.Go	to	GitMind	and	click	“New	Flowchart”	from	the	templates	library.	From	the	editor,	open	the	shapes	library	manager	and	choose	UML	shapes	folders.Drag	the	shapes	and	components	like	the	lifelines,	objects,	activation	bar,	arrows,
and	insert	labels.Now	export	the	map	to	your	desired	format	by	clicking	the	“Export”	button	at	the	top	interface.Create	Sequence	Diagram	in	VisioVisio	is	another	program	that	can	help	you	create	sequence	diagram.	This	tool	allows	you	to	work	offline	via	desktop	app	or	online	using	the	web	version.	With	it,	you	can	create,	edit,	view,	and	share
diagrams	without	the	need	to	install	any	extra	app.	What’s	more,	it	has	a	great	app	integration	with	Microsoft	software	such	as	Excel	and	Word	that	will	help	you	streamline	processes	or	workflow	further.	Here	are	the	steps	on	how	to	make	sequence	diagram	using	Visio.Open	a	new	document	and	look	for	the	search	box	then	type	UML	sequence.
Next,	choose	between	Metric	Units	or	US	Units	and	click	“Create.”It	should	load	the	diagram	and	the	collection	of	shapes	on	the	left	side	interface.Drag	the	elements	for	the	sequence	diagram	from	the	shapes	window	to	the	page	and	double	click	on	the	text	labels	to	rename.Create	Sequence	Diagram	in	ConcfluenceConfluence	is	a	collaborative	tool
to	work	with	your	team	in	building	and	organizing	projects	in	one	place	remotely	wherever	your	location	is.	You	can	infuse	plug-in	like	PlantUML,	Gliffy,	or	ZenUML	which	you	can	use	to	use	to	learn	how	to	make	sequence	diagrams.	With	Gliffy	for	Confluence,	you	can	model	numerous	unified	modeling	language	diagrams	online.	It	also	has	a	shape
manager	that	gives	you	access	to	dynamic	shapes	and	icons	that	suit	business,	software	engineering,	and	project	designs.	See	the	instructions	below	and	learn	how	to	make	a	sequence	diagram.Launch	Gliffy	on	your	browser	and	add	shapes	from	the	left-side	panel.Organize	the	arrangement	of	the	shapes	and	put	labels	to	each	process	or	event	on	the
diagram.Finally,	apply	diagram	themes	to	modify	the	appearance	of	the	diagram	then	export	or	publish	it.Create	Sequence	Diagram	in	PowerPointThe	tool	is	primarily	presentation	software	but	is	also	a	helpful	method	when	you	want	to	design	a	simple	sequence	diagram.	You	can	create	a	sequence	diagram	with	a	PowerPoint	shapes	library.	This
method,	however,	requires	you	individually	add	and	arrange	the	shapes	to	come	up	with	a	sequence	diagram.	Suppose	you	want	to	create	sequence	diagram	in	PowerPoint,	here	are	steps	you	can	follow.Open	a	blank	document	and	go	to	the	“Insert”	tab	then	add	the	necessary	shapes	from	the	“Shapes”	drop-down	list.Identify	the	processes	of	the
system	you	want	to	visualize	and	add	them	to	the	diagram.	Just	insert	arrows	and	inserting	labels	with	a	text	box.Customize	your	diagram	from	the	“Format”	tab	where	you	can	edit	the	shapes	color,	text	color,	font,	and	so	on.Create	Sequence	Diagram	in	WordWord	is	another	Microsoft	product	that	you	can	use	to	create	sequence	diagram.	In	the
same	way,	this	lets	you	make	a	sequence	diagram	from	scratch	with	the	help	of	the	shape	library.	Though	this	method	gives	your	more	flexibility	in	the	creation	process	since	you	get	to	arrange	them	according	to	your	desired	structure.	Also,	you	can	add	all	the	necessary	shapes	and	customize	every	element.Open	a	new	file	and	navigate	to	the
“Insert”	tab.	From	the	“Shapes”	menu,	add	all	shapes	that	represent	the	objects,	lifelines,	messages,	and	activation	bar.Once	every	element	is	inserted,	label	the	messages	and	returning	messages	to	clearly	visualize	the	processes	of	the	system.After	you	create	a	sequence	diagram	structure,	you	can	add	your	personal	touch	to	it	by	customizing	its
properties.Create	Sequence	Diagram	in	StarUMLStarUML	is	a	diagramming	tool	that	supports	almost	all	platforms	including	Windows,	Mac,	and	Linux.	The	good	thing	about	this	app	is	there	are	no	big	changes	when	it	comes	to	its	interface	no	matter	the	platform	you	are	using.	It	comes	with	an	extensive	library	of	shapes	for	sequence	diagrams,	use
case	diagrams,	class	diagrams,	flowcharts,	and	many	more.	You	can	also	do	specific	customization	to	the	elements.	Allowing	you	to	personalize	the	font,	alignment,	line	style,	and	other	properties.	To	know	how	to	create	sequence	diagram,	refer	to	the	steps	below.Install	StarUML	on	your	PC	and	launch	it.	Right-click	on	the	“Untitled”	folder	and	select
“Add	Diagram.”	Choose	“Sequence	Diagram”	from	the	option.A	collection	of	dedicated	elements	will	appear	at	the	bottom	left-hand	side	of	the	interface.	Drag	the	notations	you	need	and	double	click	on	the	shape	to	add	arrows,	edit	the	text,	add	another	lifeline,	and	more.For	the	final	touch,	adjust	the	properties	of	the	elements	from	the	“Styles”
option.	Once	done,	go	to	“File”,	click	“Save”	and	select	a	folder.Create	Sequence	Diagram	in	Draw.ioDraw.io	does	not	only	allow	you	to	create	sequence	diagram	but	also	an	entity-relationship	diagram,	wireframe,	network	diagram,	and	mockups.	Moreover,	you	can	import	your	own	set	of	shapes	to	work	on	a	variety	of	graphical	presentations	or	opt	in
using	the	pre-loaded	shapes	from	its	shapes	manager.	Aside	from	that,	Draw.io	has	a	built	collaborative	editing	wherein	teams	can	build	and	edit	diagrams	together	virtually.	Find	out	how	this	tool	works	from	the	step-by-step	guide.Open	a	browser	and	launch	Draw.io.	Select	between	“Create	New	Diagram”	and	“Open	Existing	Diagram”	options.A
dialogue	box	containing	templates	will	appear.	Look	for	UML	and	select	the	sequence	diagram	illustration	and	click	“Create”	from	the	lower-left	corner.Adjust	the	placement	of	the	objects	or	messages	on	how	you	would	according	to	the	system	you	are	visualizing.	Once	done,	you	can	save	the	diagram	on	the	cloud	or	share	it	by	permitting	access	to
another	Google	user.A	sequence	diagram	is	useful	for	businesses,	software	engineering	and	other	process	analyzing	assignments.	You	can	create	sequence	diagram	with	pen	and	paper	but	a	software	program	designed	for	this	purpose	will	save	more	time.	Hence,	the	tools	above	along	with	their	step-by-step	tutorials	should	help	you	out.	Skip	to	main
contentLog	inStart	diagrammingStart	diagrammingLog	inStart	diagrammingStart	diagrammingTemplates	homeWhether	you’re	working	on	a	new	software	function	or	documenting	a	flow	that	works,	FigJam’s	sequence	diagram	tools	can	help	you	see	how	every	component	of	your	process	fits	together.Design	the	most	effective	processes	for	your
systems	(on	the	most	engaging	template	for	your	team)	with	an	interaction	diagram.Start	diagrammingGain	a	clear	understanding	of	each	use	case,	document	detailed	operations,	and	determine	ways	to	improve	processes	already	in	motion.Avoid	hiccups:	Through	feedback	via	cursor	chats,	emotes,	and	more,	find	and	correct	potential	problems
during	the	planning	phase.Invite	input:	Interface	with	other	developers	or	another	participant	to	determine	the	best	course	of	action​	for	each	use	case.Get	a	birds’	eye	view:	Design	a	diagram	that	makes	each	step	in	a	system’s	process	instantly	intuitive.FigJamInteractions	you	won’t	object	toDevelop	adaptable	sequence	diagrams	with	your	team.	In
conjunction	with	your	sequence	diagram	example,	use	Community-built	tools	and	widgets	including	stamps,	stickers,	cursor	chats,	and	audio	chats	to	fold	in	feedback,	discover	new	pathways,	and	keep	the	focus	on	collaboration—in	your	system	and	your	team.A	sequence	diagram	is	a	visual	tool	often	that	represents	the	interactions	between	different
objects	in	a	system	in—you	guessed	it—a	sequential	order.In	software	engineering,	a	sequence	diagram	can	be	used	to	demonstrate	how	a	function	is	carried	out	on	a	platform	by	breaking	down	when	a	certain	fragment,	objects	or	components	interact.	Sequence	diagrams	can	also	serve	as	useful	frameworks	for	documenting	workflows	and	operations
and	analyzing	each	interaction.Sequence	diagrams	visualize	each	step	of	an	interaction	or	a	function.	Software	developers	often	turn	to	sequence	diagrams	to	map	out	the	function’s	sequence	of	events	to	spot	any	potential	issues	before	they	even	begin	hacking.Sequence	diagrams	can	also	make	existing	systems	faster	and	more	effective.Let’s	say
your	customers	are	having	issues	purchasing	specific	movie	seats	using	your	online	platform.	By	using	sequence	diagram	examples,	you	can	gain	insight	into	the	many	steps	the	ticket	buyer	and	computer	server	must	complete	before	you	can	get	butts	in	seats.	From	there,	you	can	streamline	the	sequence	of	events—and	your	users’	experience.You
can	read	a	sequence	diagram	by	beginning	at	the	top	of	the	diagram,	where	you’ll	find	entities—actors	(people)	or	objects—in	labeled	rectangle	boxes.	Each	object	and	interaction	helps	make	sense	of	the	world	of	software	engineering	in	a	sequence	diagram	example.	Below	each	box,	you’ll	find	a	dotted	“lifeline”	which	represents	the	different	entities
in	the	system,	as	well	as	arrows	that	will	move	you	through	the	steps	in	the	sequence.Wondering	how	to	make	sequence	diagrams?	With	FigJam’s	sequence	diagram	online	tool,	you	can	unpack	your	processes	with	ease.	Just	download	our	example	of	sequence	diagram	template	to	get	started	for	free.Explore	even	more	templates,	widgets,	and	plugins
—all	built	by	the	Figma	community.	This	sequence	diagram	tutorial	is	to	help	you	understand	sequence	diagrams	better;	to	explain	everything	you	need	to	know,	from	how	to	draw	a	sequence	diagram	to	the	common	mistakes	you	should	avoid	when	drawing	one.There	are	3	types	of	Interaction	diagrams;	Sequence	diagrams,	communication	diagrams,
and	timing	diagrams.	These	diagrams	are	used	to	illustrate	interactions	between	parts	within	a	system.	Among	the	three,	sequence	diagrams	are	preferred	by	both	developers	and	readers	alike	for	their	simplicity.In	this	sequence	diagram	tutorial	you	will	learn	about;What	is	a	Sequence	Diagram?Sequence	diagrams,	commonly	used	by	developers,
model	the	interactions	between	objects	in	a	single	use	case.	They	illustrate	how	the	different	parts	of	a	system	interact	with	each	other	to	carry	out	a	function,	and	the	order	in	which	the	interactions	occur	when	a	particular	use	case	is	executed.In	simpler	words,	a	sequence	diagram	shows	how	different	parts	of	a	system	work	in	a	‘sequence’	to	get
something	done.Sequence	diagrams	are	commonly	used	in	software	development	to	illustrate	the	behavior	of	a	system	or	to	help	developers	design	and	understand	complex	systems.	They	can	be	used	to	model	both	simple	and	complex	interactions	between	objects,	making	them	a	useful	tool	for	software	architects,	designers,	and	developers.Sequence
Diagram	NotationsA	sequence	diagram	is	structured	in	such	a	way	that	it	represents	a	timeline	that	begins	at	the	top	and	descends	gradually	to	mark	the	sequence	of	interactions.	Each	object	has	a	column	and	the	messages	exchanged	between	them	are	represented	by	arrows.A	Quick	Overview	of	the	Various	Parts	of	a	Sequence	DiagramLifeline
NotationA	sequence	diagram	is	made	up	of	several	of	these	lifeline	notations	that	should	be	arranged	horizontally	across	the	top	of	the	diagram.	No	two	lifeline	notations	should	overlap	each	other.	They	represent	the	different	objects	or	parts	that	interact	with	each	other	in	the	system	during	the	sequence.A	lifeline	notation	with	an	actor	element
symbol	is	used	when	the	particular	sequence	diagram	is	owned	by	a	use	case.A	lifeline	with	an	entity	element	represents	system	data.	For	example,	in	a	customer	service	application,	the	Customer	entity	would	manage	all	data	related	to	a	customer.A	lifeline	with	a	boundary	element	indicates	a	system	boundary/	software	element	in	a	system;	for
example,	user	interface	screens,	database	gateways	or	menus	that	users	interact	with,	are	boundaries.And	a	lifeline	with	a	control	element	indicates	a	controlling	entity	or	manager.	It	organizes	and	schedules	the	interactions	between	the	boundaries	and	entities	and	serves	as	the	mediator	between	them.Activation	BarsThe	activation	bar	is	the	box
placed	on	the	lifeline.		It	is	used	to	indicate	that	an	object	is	active	(or	instantiated)	during	an	interaction	between	two	objects.	The	length	of	the	rectangle	indicates	the	duration	of	the	objects	staying	active.In	a	sequence	diagram,	an	interaction	between	two	objects	occurs	when	one	object	sends	a	message	to	another.	The	use	of	the	activation	bar	on
the	lifelines	of	the	Message	Caller	(the	object	that	sends	the	message)	and	the	Message	Receiver	(the	object	that	receives	the	message)	indicates	that	both	are	active/	are	instantiated	during	the	exchange	of	the	message.Message	ArrowsAn	arrow	from	the	Message	Caller	to	the	Message	Receiver	specifies	a	message	in	a	sequence	diagram.			A
message	can	flow	in	any	direction;	from	left	to	right,	right	to	left,	or	back	to	the	Message	Caller	itself.	While	you	can	describe	the	message	being	sent	from	one	object	to	the	other	on	the	arrow,	with	different	arrowheads	you	can	indicate	the	type	of	message	being	sent	or	received.The	message	arrow	comes	with	a	description,	which	is	known	as	a
message	signature,	on	it.	The	format	for	this	message	signature	is	below.	All	parts	except	the	message_name	are	optional.attribute	=	message_name	(arguments):	return_type		As	shown	in	the	activation	bars	example,	a	synchronous	message	is	used	when	the	sender	waits	for	the	receiver	to	process	the	message	and	return	before	carrying	on	with
another	message.		The	arrowhead	used	to	indicate	this	type	of	message	is	a	solid	one,	like	the	one	below.An	asynchronous	message	is	used	when	the	message	caller	does	not	wait	for	the	receiver	to	process	the	message	and	return	before	sending	other	messages	to	other	objects	within	the	system.	The	arrowhead	used	to	show	this	type	of	message	is	a
line	arrow	as	shown	in	the	example	below.A	return	message	is	used	to	indicate	that	the	message	receiver	is	done	processing	the	message	and	is	returning	control	over	to	the	message	caller.	Return	messages	are	optional	notation	pieces,	for	an	activation	bar	that	is	triggered	by	a	synchronous	message	always	implies	a	return	message.Tip:	You	can
avoid	cluttering	up	your	diagrams	by	minimizing	the	use	of	return	messages	since	the	return	value	can	be	specified	in	the	initial	message	arrow	itself.Participant		creation	messageObjects	do	not	necessarily	live	for	the	entire	duration	of	the	sequence	of	events.	Objects	or	participants	can	be	created	according	to	the	message	that	is	being	sent.The
dropped	participant	box	notation	can	be	used	when	you	need	to	show	that	the	particular	participant	did	not	exist	until	the	create	call	was	sent.		If	the	created	participant	does	something	immediately	after	its	creation,	you	should	add	an	activation	box	right	below	the	participant	box.Participant	destruction	messageLikewise,	participants	when	no
longer	needed	can	also	be	deleted	from	a	sequence	diagram.	This	is	done	by	adding	an	‘X’	at	the	end	of	the	lifeline	of	the	said	participant.When	an	object	sends	a	message	to	itself,	it	is	called	a	reflexive	message.	It	is	indicated	with	a	message	arrow	that	starts	and	ends	at	the	same	lifeline	as	shown	in	the	example	below.UML	diagrams	generally
permit	the	annotation	of	comments	in	all	UML	diagram	types.	The	comment	object	is	a	rectangle	with	a	folded-over	corner	as	shown	below.	The	comment	can	be	linked	to	the	related	object	with	a	dashed	line.Note:		View	Sequence	Diagram	Best	Practices	to	learn	about	sequence	fragments.Sequence	Diagram	Best	PracticesManage	complex
interactions	with	sequence	fragmentsA	sequence	fragment	is	represented	as	a	box	that	frames	a	section	of	interactions	between	objects	(as	shown	in	the	examples	below)	in	a	sequence	diagram.It	is	used	to	show	complex	interactions	such	as	alternative	flows	and	loops	in	a	more	structured	way.	On	the	top	left	corner	of	the	fragment	sits	an	operator.
This	–	the	fragment	operator	–	specifies	what	sort	of	a	fragment	it	is.AlternativesThe	alternative	combination	fragment	is	used	when	a	choice	needs	to	be	made	between	two	or	more	message	sequences.	It	models	the	“if	then	else”	logic.The	alternative	fragment	is	represented	by	a	large	rectangle	or	a	frame;	it	is	specified	by	mentioning	‘alt’	inside	the
frame’s	name	box	(a.k.a.	fragment	operator).To	show	two	or	more	alternatives,	the	larger	rectangle	is	then	divided	into	what	is	called	interaction	operands	using	a	dashed	line,	as	shown	in	the	sequence	diagram	example	above.	Each	operand	has	a	guard	to	test	against	and	it	is	placed	at	the	top	left	corner	of	the	operand.OptionsThe	option
combination	fragment	is	used	to	indicate	a	sequence	that	will	only	occur	under	a	certain	condition,	otherwise,	the	sequence	won’t	occur.	It	models	the	“if	then”	statement.Similar	to	the	alternative	fragment,	the	option	fragment	is	also	represented	with	a	rectangular	frame	where	‘opt’	is	placed	inside	the	name	box.Unlike	the	alternative	fragment,	an
option	fragment	is	not	divided	into	two	or	more	operands.	Option’s	guard	is	placed	at	the	top	left	corner.(Find	an	example	sequence	diagram	with	an	option	fragment	in	the		Sequence	Diagram	Templates	and	Examples	section).LoopsLoop	fragment	is	used	to	represent	a	repetitive	sequence.	Place	the	words	‘loop’	in	the	name	box	and	the	guard
condition	near	the	top	left	corner	of	the	frame.In	addition	to	the	Boolean	test,	the	guard	in	a	loop	fragment	can	have	two	other	special	conditions	tested	against.	These	are	minimum	iterations	(written	as	minint	=	[the	number]	and	maximum	iterations	(written	as	maxint	=	[the	number]).If	it	is	a	minimum	iterations	guard,	the	loop	must	execute	not	less
than	the	number	mentioned,	and	if	it	is	a	maximum	iterations	guard,	the	loop	mustn’t	execute	more	than	the	number	indicated.(Find	an	example	of	a	loop	fragment	below	in	the	sequence	diagram	templates	and	example	section)Reference	FragmentYou	can	use	the	ref	fragment	to	manage	the	size	of	large	sequence	diagrams.	It	allows	you	to	reuse	part
of	one	sequence	diagram	in	another,	or	in	other	words,	you	can	reference	part	of	a	diagram	in	another	diagram	using	the	ref	fragment.To	specify	the	reference	fragment,	you	have	to	mention	‘ref’	in	the	name	box	of	the	frame	and	the	name	of	the	sequence	diagram	that	is	being	referred	to	inside	the	frame.For	more	sequence	fragments	refer	to
Beyond	the	Basics	of	Sequence	Diagrams:	Part	1,Part	2	and	Part	3.Draw	smaller	sequence	diagrams	that	capture	the	essence	of	the	use	caseInstead	of	cluttering	your	sequence	diagram	with	several	objects	and	groups	of	messages	that	will	confuse	the	reader,	draw	a	few	smaller	sequence	diagrams	that	aptly	explain	what	your	system	does.		Make
sure	that	the	diagram	fits	on	a	single	page	and	leaves	space	for	explanatory	notes	too.Also	instead	of	drawing	dozens	of	sequence	diagrams,	find	out	what	is	common	among	the	scenarios	and	focus	on	that.	And	if	the	code	is	expressive	and	can	stand	on	its	own,	there’s	no	need	to	draw	a	sequence	diagram	in	the	first	place.How	to	Draw	a	Sequence
DiagramA	sequence	diagram	represents	the	scenario	or	flow	of	events	in	one	single	use	case.	The	message	flow	of	the	sequence	diagram	is	based	on	the	narrative	of	the	particular	use	case.Then,	before	you	start	drawing	the	sequence	diagram	or	decide	what	interactions	should	be	included	in	it,	you	need	to	draw	the	use	case	diagram	and	ready	a
comprehensive	description	of	what	the	particular	use	case	does.From	the	above	use	case	diagram	example	of	‘Create	New	Online	Library	Account’,	we	will	focus	on	the	use	case	named	‘Create	New	User	Account’	to	draw	our	sequence	diagram	example.Before	drawing	the	sequence	diagram,	it’s	necessary	to	identify	the	objects	or	actors	that	would
be	involved	in	creating	a	new	user	account.	These	would	be;LibrarianOnline	Library	Management	systemUser	credentials	databaseEmail	systemOnce	you	identify	the	objects,	it	is	then	important	to	write	a	detailed	description	of	what	the	use	case	does.	From	this	description,	you	can	easily	figure	out	the	interactions	(that	should	go	in	the	sequence
diagram)	that	would	occur	between	the	objects	above,	once	the	use	case	is	executed.Here	are	the	steps	that	occur	in	the	use	case	named	‘Create	New	Library	User	Account’.The	librarian	request	the	system	to	create	a	new	online	library	accountThe	librarian	then	selects	the	library	user	account	typeThe	librarian	enters	the	user’s	detailsThe	user’s
details	are	checked	using	the	user	Credentials	DatabaseThe	new	library	user	account	is	createdA	summary	of	the	new	account’s	details	is	then	emailed	to	the	userFrom	each	of	these	steps,	you	can	easily	specify	what	messages	should	be	exchanged	between	the	objects	in	the	sequence	diagram.	Once	it’s	clear,	you	can	go	ahead	and	start	drawing	the
sequence	diagram.The	sequence	diagram	below	shows	how	the	objects	in	the	online	library	management	system	interact	with	each	other	to	perform	the	function	‘Create	New	Library	User	Account’.Sequence	Diagram	Common	MistakesWhen	drawing	sequence	diagrams,	designers	tend	to	make	these	common	mistakes.	By	avoiding	these	mistakes	you
can	ensure	the	quality	of	your	diagram.Adding	too	much	detail.	This	clutters	up	the	diagram	and	makes	it	difficult	to	read.Obsolete	and	out-of-date	sequence	diagrams	that	are	irrelevant	when	compared	to	the	interfaces,	actual	architectures,	etc.	of	the	system.	Don’t	forget	to	replace	them	or	modify	them.Leaving	no	blank	space	between	the	use	case
text	and	the	message	arrow;	this	makes	it	difficult	for	anyone	to	read	the	diagram.Not	considering	the	origins	of	message	arrows	carefully.See	these	common	mistakes	explained	in	detail	in	Sequence	Diagram	Guide:	Common	Mistakes	to	Avoid	When	Drawing	Sequence	Diagrams.Sequence	Diagram	Templates	and	ExamplesFollowing	are	a	few
sequence	diagram	examples	and	templates	that	are	drawn	using	Creately.	Create	sequence	diagrams	online	using	Creately’s	online	tool.	Click	on	the	template	to	open	it	in	the	editor.Sequence	Diagram	of	an	Online	Exam	SystemOnline	Examination	-	Sequence	Diagram	Template	(Click	on	the	template	to	edit	it	online)Sequence	Diagram	Example	of	a
School	Management	SystemSchool	Management	System	-	Sequence	Diagram	Template	(Click	on	the	template	to	edit	it	online)Example	of	an	Option	Combination	FragmentExample	of	an	option	fragment	(Click	on	the	template	to	edit	it	online)Example	of	a	Loop	SequenceLoops	-	Sequence	Diagram	Example	(Click	on	the	template	to	edit	it
online)Sequence	Diagram	Example	of	a	Card	GameCard	Game	-	Sequence	Diagram	Template	(Click	on	the	template	to	edit	it	online)Sequence	Diagram	Example	of	a	Balance	LookupBalance	Lookup	-	Sequence	Diagram	Example	(Click	on	the	template	to	edit	it	online)Sequence	Diagram	Example	of	an	Online	Movie	Ticket	Booking	SystemOnline	Movie
Ticket	Booking	-	Sequence	Diagram	Template	(Click	on	the	template	to	edit	it	online)Here	are	some	more	sequence	diagram	templates	and	examples	that	you	can	edit	right	away.Feedback	on	the	Sequence	Diagram	GuideThis	sequence	diagram	tutorial	covers	everything	you	need	to	know	on	sequence	diagrams	and	drawing	them.	If	you	have	any
suggestions	or	questions	regarding	the	sequence	diagram	tutorial,	feel	free	to	leave	a	comment.More	Diagram	TutorialsSequence	diagrams	provide	a	simplified	view	of	complex	system	interactions,	making	it	easier	to	understand	the	system’s	behavior.Sequence	diagrams	provide	a	common	language	for	developers,	designers,	and	other	stakeholders
to	discuss	the	system’s	behavior	which	contributes	to	improving	communication.Sequence	diagrams	can	help	to	identify	errors	and	issues	in	the	system	making	it	easier	to	identify	and	fix	problems	before	they	become	more	serious.Sequence	diagrams	can	be	used	to	design	new	systems,	allowing	developers	to	test	different	scenarios	and	identify
potential	issues	before	they	start	coding.	This	helps	save	time	and	resources	by	identifying	problems	early	in	the	development	process.UML	stands	for	Unified	Modeling	Language,	and	it	is	a	standardized	visual	language	for	modeling	software	systems.	UML	diagrams	are	graphical	representations	of	different	aspects	of	a	software	system,	such	as	its
structure,	behavior,	and	interactions	between	components.	They	are	typically	used	to	communicate	design	ideas	and	requirements	to	stakeholders,	to	understand	and	analyze	complex	software	systems,	and	to	guide	the	implementation	of	software	systems.To	learn	more	about	different	types	of	UML	diagrams,	refer	to	Creately’s	guide	on	UML
Diagram	Types.In	sequence	diagrams,	lifelines	are	depicted	as	vertical	lines	that	represent	the	objects	or	actors	participating	in	the	interaction.	In	contrast,	communication	diagrams	use	a	horizontal	line	to	represent	each	object	or	actor,	and	arrows	are	used	to	represent	messages	exchanged	between	them.In	sequence	diagrams,	messages	are
represented	by	arrows	that	indicate	the	order	in	which	they	are	sent	and	received.	The	arrow	typically	points	downwards	from	the	sender	to	the	receiver.	In	communication	diagrams,	messages	are	represented	by	arrows	that	connect	the	lifelines	and	indicate	the	direction	of	the	message	flow.	The	arrow	typically	points	from	the	sender	to	the
receiver.Sequence	diagrams	place	a	greater	emphasis	on	the	timing	and	order	of	messages	exchanged	between	objects.	Therefore,	they	are	more	suitable	for	modeling	interactions	that	require	a	detailed	understanding	of	the	timing	and	order	of	events.	In	contrast,	communication	diagrams	focus	on	the	relationships	between	objects	and	the	messages
exchanged	between	them,	making	them	more	suitable	for	modeling	interactions	that	require	a	high-level	view	of	the	system’s	structure.	Enjoy	the	new	generation	of	software	development	with	contemporary	DevOps	tools.	UX	Design	Visualize	screen	flow	and	layout	with	wireframe,	storyboard,	and	prototype	tool.	Learn	more			An	online	editor	that
provides	content	creators	with	charts,	data	widgets,	and	maps	to	visualize	data	while	providing	information,	tables,	and	spreadsheet	tools	to	increase	productivity.	Check	Visual	Paradigm	online	Learn	more	Work	simultaneously	and	collaboratively	on	the	same	project.	Keep	your	work	securely	in	the	cloud	workspace.	Access	it	anytime,	anywhere.
Learn	more	Want	to	learn	more?	You'll	find	simple	and	state-of-the-art	tools	in	Visual	Paradigm.	The	go-to	solution	for	leading	product	teams	worldwide.	Join	the	320,000+	professionals	and	organizations	who	trust	us!	From	small	businesses	to	Fortune	500	companies,	universities,	and	government	sectors,	our	proven	solutions	have	made	us	the	go-to
choice	for	enterprise	success.	The	world's	leading	institutions	use	Visual	Paradigm	to	prepare	the	next	generation	of	IT	developers	with	the	specialized	skills	needed	for	the	workspace.	Join	Us	Now!	We	use	cookies	to	offer	you	a	better	experience.	By	visiting	our	website,	you	agree	to	the	use	of	cookies	as	described	in	our	Cookie	Policy.	Welcome	to
the	comprehensive	tutorial	on	creating	Sequence	Diagrams	in	UML.	Sequence	diagrams	are	a	vital	part	of	UML,	allowing	you	to	visually	represent	interactions	between	objects	in	a	system.	This	tutorial	will	guide	you	through	the	notations,	elements,	and	steps	involved	in	drawing	effective	sequence	diagrams.	Whether	you’re	a	beginner	or	looking	to
enhance	your	UML	skills,	this	guide	is	designed	to	provide	a	clear	understanding	of	sequence	diagrams	and	how	to	use	them	in	your	software	modeling	endeavors.	What	is	a	Sequence	Diagram	in	UML?	UML	Sequence	diagrams	are	a	powerful	tool	for	capturing	and	visualizing	interactions	between	objects	in	a	system.	They	are	particularly	useful	in
transitioning	from	high-level	requirements,	such	as	use	cases,	to	a	more	formal	level	of	system	design.	Sequence	diagrams	illustrate	the	chronological	order	of	interactions,	depicting	lifelines	and	messages	exchanged	between	objects.	When	to	Use	Sequence	Diagrams?	Model	high-level	interactions	between	active	objects	in	a	system.	Model
interactions	within	a	collaboration	that	realizes	a	use	case.	Model	interactions	within	a	collaboration	that	realizes	an	operation.	Capture	either	generic	interactions	(showing	all	possible	paths)	or	specific	instances	of	an	interaction	(showing	just	one	path).	Sequence	Diagram	Notations	Lifeline	A	lifeline	represents	an	individual	participant	in	the
interaction.	Actor	An	actor	is	a	role	played	by	an	entity	interacting	with	the	subject.	It	can	represent	human	users,	external	hardware,	or	other	subjects.	Activation	An	activation,	represented	by	a	thin	rectangle	on	a	lifeline,	signifies	the	period	during	which	an	element	is	performing	an	operation.	Messages	Call	Message	A	call	message	defines
communication	between	lifelines,	representing	the	invocation	of	an	operation	on	the	target	lifeline.	Return	Message	A	return	message	represents	the	passing	of	information	back	to	the	caller	of	a	corresponding	former	message.	Self	Message	A	self	message	denotes	communication	within	the	same	lifeline,	representing	the	invocation	of	a	message	on
itself.	Recursive	Message	A	recursive	message	is	similar	to	a	self	message	but	points	to	an	activation	on	top	of	the	current	one.	Create	Message	A	create	message	signifies	the	instantiation	of	a	target	lifeline.	Destroy	Message	A	destroy	message	represents	the	request	to	destroy	the	lifecycle	of	the	target	lifeline.	Duration	Message	A	duration	message
shows	the	time	distance	between	two	time	instants	for	a	message	invocation.	Note	A	note	or	comment	provides	the	ability	to	attach	remarks	to	elements	but	carries	no	semantic	force.	Drawing	a	Sequence	Diagram:	Step-by-Step	Guide	Identify	Participants:	Determine	the	objects	participating	in	the	collaboration	or	use	case	scenario.	Scenario
Analysis:	If	derived	from	a	scenario,	select	the	normal	scenarios	first.	Identify	the	primary	actor(s)	activating	the	use	case.	Message	Flow:	Consider	the	initiating	point	of	the	scenario.	Define	the	system’s	response	to	the	actor’s	message	and	what	needs	handling	before	the	return	message.	Object	and	Operation	Identification:	Identify	candidate	objects
and	operations	based	on	the	scenario.	Use	this	information	to	incrementally	derive	the	class	diagram.	Repeat	Scenario	Points:	Iterate	through	each	point	of	the	scenario	until	completion.	Alternative	Scenarios:	Draw	corresponding	sequence	diagrams	for	exception	or	alternative	scenarios.	Sequence	Diagram	Examples	Sequence	in	MVC	Framework
Pattern	In	the	following	sequence	diagram	example,	we	observe	the	interactions	between	a	user	and	a	set	of	participating	objects.	The	diagram	comprises	four	primary	components:	the	user,	represented	as	the	actor,	the	boundary	object	named	‘interface,’	the	controller	object	identified	as	‘mainController,’	and	two	entity	objects	named	‘routes’	and
‘route.’	Hospital	Bed	Allocation	Recursive	Message	Example	Get	Started:	Draw	Your	Sequence	Diagram	Ready	to	draw	your	Sequence	Diagram?	Utilize	online	tools	like	Visual	Paradigm	Online,	offering	free	usage	for	non-commercial	purposes.	Draw	Your	Sequence	Diagram	Now	Remember,	mastering	sequence	diagrams	takes	practice,	so	dive	in	and
enjoy	the	process	of	creating	visual	representations	of	complex	interactions	in	your	system!	Tips	and	Tricks	for	Using	Sequence	Diagrams	in	UML	Clearly	Define	Participants:	Clearly	identify	and	name	the	participants	(objects	or	actors)	involved	in	the	interaction.	This	ensures	clarity	in	understanding	the	roles	played	by	each	entity.	Keep	It	Simple:
Strive	for	simplicity.	Avoid	unnecessary	details	that	can	clutter	the	diagram.	Focus	on	capturing	essential	interactions	to	convey	the	intended	message.	Use	Descriptive	Naming:	Employ	descriptive	and	meaningful	names	for	lifelines,	messages,	and	objects.	This	enhances	the	readability	and	comprehension	of	the	sequence	diagram.	Group	Related
Messages:	Group	related	messages	together	to	represent	a	coherent	flow	of	interactions.	This	helps	in	maintaining	a	logical	and	organized	structure.	Timing	and	Duration	Constraints:	Leverage	timing	and	duration	constraints	to	depict	the	temporal	aspects	of	message	exchanges.	This	is	especially	useful	when	illustrating	delays	or	specific	time
intervals.	Consider	Alternative	Scenarios:	Explore	alternative	scenarios	and	exception	paths.	Sequence	diagrams	are	not	only	for	depicting	the	main	flow	but	also	for	showcasing	how	the	system	behaves	under	different	conditions.	Use	Interaction	Fragments	Wisely:	Employ	interaction	fragments	such	as	loops,	alternatives,	and	options	to	capture
complex	behavior.	These	fragments	add	depth	to	the	diagram	and	accommodate	various	scenarios.	Limit	Self	Messages:	While	self	messages	are	useful	for	depicting	actions	within	the	same	lifeline,	avoid	overusing	them.	Excessive	self	messages	can	lead	to	a	cluttered	diagram.	Pay	Attention	to	Activation	Bars:	Ensure	activation	bars	are	appropriately
aligned	with	the	initiation	and	completion	times	of	the	corresponding	lifeline.	This	accuracy	aids	in	understanding	the	temporal	flow	of	the	interactions.	Consistent	Notation:	Maintain	consistency	in	notation	throughout	the	diagram.	This	includes	using	the	same	symbols	for	messages,	properly	aligning	activation	bars,	and	adhering	to	UML
conventions.	Annotate	with	Notes:	Use	notes	to	provide	additional	context	or	explanations.	This	is	especially	helpful	when	certain	aspects	of	the	interaction	need	clarification.	Validate	with	Stakeholders:	Validate	your	sequence	diagrams	with	stakeholders	to	ensure	that	the	depicted	interactions	align	with	their	understanding	of	the	system.	This	helps
in	refining	the	diagrams	for	accuracy.	Tool	Proficiency:	Familiarize	yourself	with	UML	modeling	tools	that	support	sequence	diagrams.	Proficiency	in	these	tools	can	significantly	enhance	your	productivity	and	the	quality	of	the	diagrams.	Iterative	Refinement:	Sequence	diagrams	are	often	refined	iteratively.	Don’t	hesitate	to	revisit	and	refine	your
diagrams	as	your	understanding	of	the	system	evolves.	Practice	Regularly:	Like	any	skill,	creating	effective	sequence	diagrams	improves	with	practice.	Regularly	challenge	yourself	with	diverse	scenarios	to	hone	your	UML	modeling	skills.	By	incorporating	these	tips	and	tricks,	you’ll	be	better	equipped	to	create	clear,	concise,	and	accurate	sequence
diagrams	that	effectively	communicate	the	dynamic	interactions	within	your	systems.	In	this	tutorial,	we	explored	the	fundamental	concepts	of	UML	Sequence	Diagrams,	starting	with	an	understanding	of	their	purpose	and	usage	in	system	design.	We	delved	into	the	notations,	including	lifelines,	actors,	activations,	and	various	message	types.	The
tutorial	provided	a	step-by-step	guide	on	when	and	how	to	draw	sequence	diagrams,	emphasizing	scenario	analysis,	object	identification,	and	the	iterative	process	of	capturing	interactions.	Additionally,	we	showcased	practical	examples,	such	as	booking	a	seat	and	hospital	bed	allocation,	to	illustrate	the	application	of	sequence	diagrams	in	real-world
scenarios.	The	tutorial	concluded	by	encouraging	you	to	draw	your	sequence	diagrams	using	tools	like	Visual	Paradigm	Online.	Now	equipped	with	the	knowledge	and	tools,	you’re	ready	to	confidently	create	sequence	diagrams,	effectively	capturing	the	dynamic	interactions	within	your	systems.	Dive	in,	experiment,	and	enjoy	the	process	of
translating	complex	scenarios	into	visual	representations!	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution
—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the
original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are
given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.		title	THIS	IS	A	LARGE	TITLEWITH	A	LINE	BREAK	participantspacing	14	Alice->Bob:info	Alice	New	participants	of	type	participant	may	be	added	by
clicking	the	icon	The	following	special	participant	types	exist	participant	-	box	with	participant	name	inside	(the	default)	rparticipant	-	rounded	box	actor	-	specific	icon	boundary	-	specific	icon	control	-	specific	icon	database	-	specific	icon	entity	-	specific	icon	materialdesignicons	-	unicode	code	points	(see	right	hand	side	in	the	gray	bar	after	clicking
an	icon)	fontawesome6solid	-	unicode	code	points	(see	top	right	corner	after	clicking	an	icon)	fontawesome6regular	-	unicode	code	points	(see	top	right	corner	after	clicking	an	icon)	fontawesome6brands	-	unicode	code	points	(see	top	right	corner	after	clicking	an	icon)	image	-	png	image	data	url,	maximum	data	url	size	is	50KB,	the	rendered	size	is
calculated	based	on	maximum	participant	height,	add	padding	in	the	top	of	the	image	to	decrease	rendered	width	and	total	size	note:	fontawesome5solid/regular/brands	and	fontawesome	(v4)	are	now	deprecated	but	will	remain	supported	until	at	least	2025	A	long	displayed	name	can	be	written	on	form:	participant	"some	verylong	name"	as	Alice	Edit
a	participant	by	double-clicking	it	Change	the	position	of	participant	by	clicking	and	dragging	it	to	the	right	or	left	passed	another	participant	Delete	a	participant	(and	all	messages	interactions	with	it)	by	clicking	it	and	using	the	delete	key		participant	Participant		actor	"**++Big	andbold	name"	as	actorMultiline	#red		participant	"some	longname
with	**//styling//**"	as	participantMultiline		materialdesignicons	F1FF	escalator		fontawesome6solid	f48e	"++**Syringe**++"	as	Syringe	#red	fontawesome6regular	f0f8	Hospital	#blue	fontawesome6brands	f3b6	Jenkins	#green		actor	#green:0.5	Actor	boundary	#ff00ff:2	Boundary	control	:1	Control	database	#blue:1	Database	#red	entity	:0.5	Entity
participant	:0	Participant	participant	:0	"++**Participant	2**++"	as	p2		image	...	png	The	participants	can	be	displayed	in	the	bottom	of	the	diagram	by	using	the	bottomparticipants	keyword	which	renders	all	the	participants	in	the	bottom	of	the	diagram	Note:	An	alternative	for	displaying	participants	when	scrolling	in	a
large	diagram	is	"View"	->	"Participant	Overlay	On	Scroll"		bottomparticipants	participant	A	participant	"BBBBBBBB"	as	B	materialdesignicons	f14d	note	fontawesome6regular	f0f8	Hospital	fontawesome6brands	f3b6	Jenkins	actor	Actor	A->B:info	A->note:info	A->Hospital:info	A->Jenkins:info	A->Actor:info	Messages	are	created	by	clicking	and
dragging	in	the	diagram	Hold	Shift	before	clicking	for	dashed	line	Hold	Ctrl	(or	Cmd	for	Mac)	before	clicking	for	open	arrow	Hold	Shift+Ctrl	(or	Shift+Cmd	for	Mac)	before	clicking	for	open	arrow	with	dashed	line	Edit	the	text	of	a	message	by	double-clicking	it	Change	the	start	and	end	participants	of	the	message	by	clicking	and	dragging	the	start	or
end	of	the	message	Change	position	of	the	message	by	clicking	and	dragging	the	middle	of	the	message	Delete	the	message	by	clicking	it	and	pressing	the	delete	key	New	line	is	create	using		Alice-:4>Bob:Test12345	Alice-:2>>Bob:Test	Alice-#00ff00:2>Bob:Test	Alice--#red:4>Bob:Test	AliceBob:Test	AliceBob:Test	AliceBob:Test	AliceBob:Test	Non-
instantaneous	messages	are	created	by	adding	([delay])	before	the	target	participant,	examples:	A->(1)B:	info	A-->(5)B:	info	A->>(2)B:	info	Otherwise	non-instantaneous	messages	behaves	just	like	normal	messages		participant	A	participant	B	participant	C	A->(1)B:info	A(1)(5)C:infoinfo	activate	B	activate	C	B(1)		Client->(5)Server:first	sent	message
space	-6	Client->Server:later	message	Incoming	and	Outgoing	Messages	are	created	by	using	the	special	participants	[and],	examples:	Failure	Messages	are	created	by	using	x	to	denot	the	arrow	head,	examples:	A-xB:	info	A--#redx(1)C:	info		A-#redxB:failure	1	C-xB:failure	2	Bx-B:failure	3	C(5)x--A:failure	4	Notes	and	boxes	are	created	by	right
clicking	in	the	diagram	and	selecting	the	wanted	note	/	box	entry	from	the	menu	Edit	the	text	of	a	note	or	box	by	double	clicking	it	Change	the	start	and	end	participants	of	the	"note	or	box	over	several	participants"	by	clicking	and	dragging	the	start	or	end	of	the	note	or	box	Change	position	of	the	note	or	box	by	clicking	and	dragging	the	middle	of
the	note	or	box	Note:	It	is	the	bottom	of	the	shapes	that	counts	as	the	y	position	when	dragging	Delete	the	note	or	box	by	clicking	it	and	pressing	the	delete	key	New	line	is	create	using		note	over	A:note	over	onemultiple	linesof	text	note	over	A,B:note	over	several		note	left	of	A:note	left	of	note	right	of	A:note	right	of		box	over	A:box	over	one	box	over
A,B:box	over	several		box	left	of	A:box	left	of	box	right	of	A:box	right	of		abox	over	A:abox	over	one	abox	over	A,B:abox	over	several		abox	left	of	A:abox	left	of	abox	right	of	A:abox	right	of		rbox	over	A:rbox	over	one	rbox	over	A,B:rbox	over	several		rbox	left	of	A:rbox	left	of	rbox	right	of	A:rbox	right	of		aboxright	over	A,B:This	is	angular	boxright
aboxleft	over	A,B:This	is	angular	boxleft	aboxright	over	A:This	is	angular	boxright	aboxleft	over	B:This	is	angular	boxleft	aboxright	right	of	A:This	is	angular	boxright	aboxright	left	of	B:This	is	angular	boxright	aboxleft	right	of	A:This	is	angular	boxright	aboxleft	left	of	B:This	is	angular	boxleft	References	are	created	by	right	clicking	in	the	diagram
selecting	over	which	participants	the	reference	should	be	from	the	menu	Edit	the	text	of	a	reference	by	double	clicking	it	Change	the	start	and	end	participants	of	the	reference	by	clicking	and	dragging	the	start	or	end	of	the	reference	Change	position	of	the	reference	by	clicking	and	dragging	the	middle	of	the	note	or	box	Note:	It	is	the	bottom	of	the
shapes	that	counts	as	the	y	position	when	dragging	Delete	the	reference	by	clicking	it	and	pressing	the	delete	key	New	line	is	create	using		A->B:info	ref	over	B,C:other	interaction	C->D:info	Dividers	are	created	by	right	clicking	in	the	diagram	and	selecting	the	divider	entry	from	the	menu	Edit	the	text	of	a	divider	by	double	clicking	it	Change
position	of	the	divider	by	clicking	and	dragging	it	Delete	the	divider	by	clicking	it	and	pressing	the	delete	key		participant	A	participant	B	participant	C	participant	D	==info==	Create	and	destroy	are	at	this	point	not	part	of	the	context	menu,	participants	may	be	defined	in	the	start	of	the	diagram	participantNameA->*participantNameB:	message:
Sends	a	message	to	participantNameB	and	creates	participantNameB	create	participantName:	Creates	the	participant	without	sending	a	message	to	it	destroy	participantName:	Destroys	the	participant	at	the	previous	entry's	y	position	destroyafter	participantName:	Destroys	the	participant	at	after	a	space	and	gives	the	destroy	symbol	its	own	space
destroysilent	participantName:	Destroys	the	participant	at	the	previous	entry's	y	position	without	rendering	the	destroy	symbol	Click	and	drag	on	the	entries	to	move	them	in	y	axis	using	the	mouse		participant	A	actor	X	participant	B	A->B:info	B-->*C:	note	over	C:do	something	B*X:message	to	X	note	over	X:do	something	destroyafter	X	A->B:info		A-
>B:info	create	C	note	over	C:	C	created	without	message	A		A->>B:request	AD:info	Participant	spacing	allows	control	of	spacing	between	the	participants	The	participantspacing	equal	statement	makes	the	spacing	between	all	participants	equal	The	participantspacing	50	statement	makes	the	spacing	between	all	participants	at	least	50	
participantspacing	equal	participant	A	participant	B	participant	C	A->B:info	info	info	Entry	spacing	allows	control	of	spacing	between	the	entries	Click	anywhere	on	the	diagram	and	press	the	+	or	-	key	to	change	spacing	between	all	entries	Add	entryspacing	statements	to	change	in	different	places	of	the	diagram		entryspacing	0.1	A->B:info	A-
>B:info	entryspacing	3	A->B:info	entryspacing	1	A->B:info	A->B:info	Specifies	the	style	of	the	life	lines	lifelinestyle	#blue	-	make	all	life	lines	blue	lifelinestyle	participantName	#red	-	make	participant	life	line	red	lifelinestyle	:4	-	make	all	life	line	weights	4	lifelinestyle	C	#gray:1:solid	-	make	participant	life	line	gray,	line	weight	1,	solid		participant	A
participant	B	participant	C	participant	D	lifelinestyle	#red:4:solid	lifelinestyle	B	#black:1:dashed	lifelinestyle	C	#gray:1:solid	lifelinestyle	D	::dashed	A->B:info	B->C:info	C->D:info	Large	example	including	most	of	the	basic	elements		Source	too	large	to	display

