
	

https://ninamok.nurepikis.com/105053993023999444867505909264860512980921?bujabazabewutedirufivotonudamakeroboxozepolajafisotatilorosiz=kufinebirixexusopemuvebetadorepifenujegokikefetavedolositetuxevivakajebemabewenawezozorutinawexubizevajupedasowasivipexatawifisedapadigexutegebusujoratofewefenarulumulipanogaxosekixidimalitigavosuvitagaledasus&utm_kwd=vba+code+to+combine+workbooks+into+one&gojasapogewogufatobomawugomefejupu=rapekiketonobirawenuvobuvetadipemobifezomezepirejopixunovifawoxulazujunatulukoxuvabubetoloxesonujevojanajupimupovubevewapagokupo

Combined	Data	is	Better	DataStop	me	if	youve	heard	this	one	before:	I	need	to	make	a	pivot	table	but	the	data	is	spread	out	in	lots	of	different	Excel	filesDamnit!This	situation	blows,	since	your	analysis	depends	on	a	pivot	table	and	combining	a	bunch	of	workbooks	together	by	hand	is	terrible.Fortunately,	VBA	will	make	short	work	of	this	pain	in	the
ass.	Here	goes:Heres	a	link	to	the	code	above	so	you	can	review	it	side-by-side	with	the	walk	through	below.	Right-click,	Open	in	new	window.Lets	break	this	challenge	down	step-by-step	using	the	4-step	VBA	process	as	our	guide:Step	1	SetupStep	2	ExplorationStep	3	ExecutionStep	4	CleanupOur	Step	1	Setup	is	covered	by	lines	16-18	short	and
sweet.First,	on	line	16,	we	assign	the	folder	name	where	the	individual	Excel	files	are	stored.	(Youll	want	to	change	this	to	your	folder,	but	in	this	example	we	are	targeting	C:\blog\example_data_in_here.)Then,	on	lines	16-17,	we	create	a	new	Workbook	(where	Dst	is	short	for	destination,	i.e.	output)	to	store	the	data	from	each	individual	file,	then
assign	the	first	Worksheet	in	that	Workbook	as	the	Dst	Worksheet.Boom!	One	down,	three	to	go.Step	2	Exploration	begins	on	line	21,	where	we	take	advantage	of	the	Dir	function	to	loop	through	the	directory	we	set	up	moments	ago	(StrDirContainingFiles)	and	identify	every	file	that	ends	in	.xlsx.	(Thats	what	the	asterisk	character,	*,	is	doing	there	at
the	end	of	the	line.)Lines	22	through	25	store	each	file	name	inside	a	Collection	(named	colFileNames),	which	will	make	it	SUPER	easy	to	iterate	through	each	file	a	little	bit	later	in	the	code.Umm	why	not	do	the	whole	thing	in	this	Dir	loop?Yes,	we	COULD	have	conducted	the	bulk	of	the	code	inside	this	Dir	loop,	but	I	prefer	using	a	Collection	here
because	it	reduces	the	number	of	nested	loops	in	our	subroutine.	Each	nested	loop	you	add	is	another	layer	of	complexity	for	you	to	mentally	keep	track	of	fuck	that.	Programming	is	hard	enough	avoid	deeply-nested	loops	whenever	you	can.The	use	a	Collection	strategy	also	makes	it	really	easy	to	verify	that	the	loop	worked	and	pulled	in	the	data	we
expected,	which	you	can	check	for	yourself	by	un-commenting	lines	27-31.Lets	keep	it	moving	though	With	those	file	names	stored	neatly	in	colFileNames,	we	begin	looping	through	it	on	line	35.On	line	38,	strFilePath	is	assigned	to	be	the	original	source	folder	string	(strDirContainingFiles,	which	is	C:\blog\example_data_in_here	in	this	example),	a
backslash	(\),	and	the	file	name	from	colFileNames.Well	immediately	take	advantage	of	that	full	file	path	to	the	Excel	file	on	line	41,	where	we	open	that	Workbook	and	save	a	reference	to	it	as	wbkSrc	(where	Src	is	short	for	Source).	Line	42	assigns	the	target	worksheet,	named	data	in	this	example,	to	wksSrc.Exploration	continues	on	lines	46-47,
where	we	take	advantage	of	the	LastOccupiedRowNum	and	LastOccupiedColNum	functions	(which	are	defined	at	the	very	bottom	as	well	as	in	the	VBA	Toolbelt,	which	you	should	be	using)	to	easily	identify	the	last-occupied	row	and	last-occupied	column	on	the	source	Worksheet.This	is	critical	here!	By	dynamically	determining	the	last	column	and
last	row	on	each	loop,	we	can	be	confident	that	were	getting	all	the	data	from	each	Worksheet.With	the	last-occupied	row	and	last-occupied	column	numbers	stored	in	lngSrcLastRow	and	lngSrcLastCol	respectively,	we	store	the	full	data	range	on	lines	48-51,	starting	from	the	top-left	corner	and	extending	to	the	bottom-right.This	is	another	great
checkpoint:	we	can	verify	that	all	the	data	has	been	correctly	identified	and	stored	in	rngSrc	by	un-commenting	out	lines	53-55	and	calling	rngSrc.Select	to	highlight	all	the	cells.	Smooth!Heres	where	things	get	a	bit	more	interestingOn	lines	60-62,	we	check	to	see	if	this	is	NOT	the	first	iteration.Why	are	we	checking	to	see	if	this	is	the	first	loop?
Why?	Good	question!On	the	first	loop,	we	want	to	include	the	headers,	but	each	subsequent	time	we	do	NOT	want	to	include	the	headers.Each	loop	after	the	first,	we	adjust	rngSrc	to	skip	the	first	row	like	this:	Set	rngSrc	=	rngSrc.Offset(1,	0).Resize(rngSrc.Rows.Count	1)Heres	the	two-step	process	in	slow-motion:.Offset(1,	0):	this	shifts	the	whole
range	down	one	row,	meaning	the	first	row	is	no	longer	included,	but	also	means	we	now	have	a	blank	row	at	the	bottom	of	rngSrc.Resize(rngSrc.Rows.Count	1):	this	adjusts	the	bottom	row	of	rngSrc	up	one	row	by	reducing	the	total	count	of	rows	that	are	included	in	the	RangeNice!This	puts	us	at	another	good	checkpoint,	where	we	can	verify	that
the	header	is	no	longer	part	of	rngSrc	by	un-commenting	out	lines	64-68.Phew	with	that,	Step	2	Exploration	is	complete!Lets	dive	into	Step	3	Execution,	which	kicks	off	on	line	73.Here,	we	again	check	the	iteration.	If	this	is	the	first	loop,	our	target	cell	is	easy	its	A1,	since	the	Worksheet	is	empty.	(Thats	what	we	handle	on	lines	74	and	75.)	On	the
other	hand,	if	this	is	NOT	the	first	loop,	then	we:Again	take	advantage	of	LastOccupiedRowNum,	which	comes	with	the	VBA	Toolbelt	and	works	on	ANY	Worksheet,	to	identify	the	last-occupied	(on	line	77)Set	the	target	Range	to	be	one	cell	down	from	the	last-occupied	row	(on	line	78)The	actual	copy	/	paste	step	happens	on	line	80,	where	we	call
rngSrc.Copy	and	pass	in	rngDst	(which	we	just	set	on	line	78)	as	the	Destination.Almost	done	with	this	one,	I	promise!Almost	there	you	guys,	stay	with	me!The	last	challenge	within	Step	3	Execution	is	to	add	a	column	identifying	which	data	file	a	given	row	came	from	by	writing	the	Worksheet	name	into	a	far-right	column.	Lets	get	to	it!Lines	86-89
cover	another	first	loop	special	case	if	this	is	the	first	time	through,	then	we	need	to	make	sure	we	add	a	header	name!	By	taking	advantage	of	LastOccupiedColNum,	which,	again,	is	implemented	for	you	both	below	AND	in	the	VBA	Toolbelt,	we	know	that	lngDstLastCol	+	1	gives	us	the	column	right	next	to	the	last-occupied	column.We	name	this
column	header	Source	Filename	on	line	88.Since	we	know	that	each	row	of	data	from	the	last	paste	(which	happened	on	line	80)	came	from	one	of	the	different	Excel	files,	we	can	take	advantage	of	the	Range.Value	property	to	quickly	write	the	file	name	to	each	of	those	rows.First,	we	need	to	identify	the	first	row	of	data	that	was	just	pasted	in.We
used	this	same	exact	row	number	back	on	line	78,	so	we	essentially	copy	that	logic	and	assign	lngDstFirstFileRow	to	be	lngDstLastRow	+	1.Next,	we	need	to	figure	out	the	last	row	that	will	get	this	file	name	data,	and	on	line	103	we	do	just	that.Guess	which	function	rides	in	to	our	rescue?	Yep	its	our	old	standby	LastOccupiedRowNum.Now	that	we
know	the	first	row	and	the	last	row	of	the	range	of	cells	that	will	need	to	be	populated	with	the	file	name,	all	thats	left	to	do	is	get	the	right	column	number!And	wouldnt	you	know	it,	LastOccupiedColNum,	on	line	104,	assigns	lngDstLastCol	that	exact	value	Now	that	we	know	the	three	critical	components	for	a	Range:The	first	row,	which	is	stored	in
lngDstFirstFileRowThe	last	row,	which	is	stored	in	lngDstLastRowThe	column	those	rows	need	to	be	applied	in,	which	is	stored	in	lngDstLastCol	We	can	write	the	file	name	easy	peasy!On	lines	107-108,	we	use	the	values	from	#1,	#2,	and	#3	above	to	store	the	target	Range.Damn	son!	That	brings	us	to	a	great	checkpoint	by	un-commenting	lines	112-
113,	we	can	easily	verify	(using	Range.Select)	that	the	correct	Range	is	defined.Finally,	the	last	Execution	task	occurs	on	line	117,	where	we	actually	do	the	file	name	writing.	Calling	wbkSrc.Name	returns	the	file	name	(in	the	first	case,	it	will	be	AT_Apr_16.xlsx),	which	is	why	we	assign	the	rngFile.Value	to	it.Jackpot	Step	3	Execution	is	all	done!And
of	course,	we	wrap	up	with	Step	4	Cleanup.Nice	and	short	here	too:	on	line	122,	we	close	the	source	data	Workbook	(with	SaveChanges	set	to	False,	since	we	do	not	want	to	modify	those	files	at	all),	and	on	line	127	we	throw	a	quick	Data	combined!	message	box	to	let	the	user	know	the	job	is	done!Want	to	see	this	code	in	action?	Heres	an	14-minute
video	guide:Combining	many	individual	Excel	files	into	a	single	file	with	VBA	smoothly?	If	not,	let	me	know	and	Ill	help	you	get	what	you	need!	And	if	youd	like	more	step-by-step,	no-bullshit	VBA	guides	delivered	direct	to	your	inbox,	join	my	email	newsletter	below.	This	tutorial	will	show	you	how	to	combine	multiple	Excel	files	into	one	workbook	in
VBA.Creating	a	single	workbook	from	a	number	of	workbooks,	using	VBA	requires	a	number	of	steps	to	be	followed.You	need	to	select	the	workbooks	from	which	you	want	the	source	data	the	Source	files.You	need	to	select	or	create	the	workbook	to	which	you	wish	to	put	the	data	the	Destination	file.You	need	to	select	the	sheets	from	the	Source	files
that	you	require.You	need	to	tell	the	code	where	to	place	the	data	in	the	Destination	file.Combining	all	Sheets	from	all	Open	Workbooks	to	a	New	Workbook	as	Individual	SheetsIn	the	code	below,	the	files	you	need	to	copy	the	information	from	need	to	be	open	as	Excel	will	loop	through	the	open	files	and	copy	the	information	into	a	new	workbook.	The
code	is	placed	in	the	Personal	Macro	Workbook.These	files	are	the	ONLY	Excel	Files	that	should	be	open.Sub	CombineMultipleFiles()On	Error	GoTo	eh'declare	variables	to	hold	the	objects	required	Dim	wbDestination	As	Workbook	Dim	wbSource	As	Workbook	Dim	wsSource	As	Worksheet	Dim	wb	As	Workbook	Dim	sh	As	Worksheet	Dim
strSheetName	As	String	Dim	strDestName	As	String'turn	off	the	screen	updating	to	speed	things	up	Application.ScreenUpdating	=	False'first	create	new	destination	workbook	Set	wbDestination	=	Workbooks.Add'get	the	name	of	the	new	workbook	so	you	exclude	it	from	the	loop	below	strDestName	=	wbDestination.Name'now	loop	through	each	of
the	workbooks	open	to	get	the	data	but	exclude	your	new	book	or	the	Personal	macro	workbook	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName	And	wb.Name	"PERSONAL.XLSB"	Then	Set	wbSource	=	wb	For	Each	sh	In	wbSource.Worksheets	sh.Copy	After:=Workbooks(strDestName).Sheets(1)	Next	sh	End	If	Next	wb'now	close	all
the	open	files	except	the	new	file	and	the	Personal	macro	workbook.	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName	And	wb.Name	"PERSONAL.XLSB"	Then	wb.Close	False	End	If	Next	wb'remove	sheet	one	from	the	destination	workbook	Application.DisplayAlerts	=	False	Sheets("Sheet1").Delete	Application.DisplayAlerts	=
True'clean	up	the	objects	to	release	the	memory	Set	wbDestination	=	Nothing	Set	wbSource	=	Nothing	Set	wsSource	=	Nothing	Set	wb	=	Nothing'turn	on	the	screen	updating	when	complete	Application.ScreenUpdating	=	FalseExit	Subeh:	MsgBox	Err.DescriptionEnd	SubClick	on	the	Macro	dialog	box	to	run	the	procedure	from	your	Excel
screen.Your	combined	file	will	now	be	displayed.This	code	has	looped	through	each	file,	and	copied	the	sheet	to	a	new	file.	If	any	of	your	files	have	more	than	one	sheet	it	will	copy	those	as	well	including	the	sheets	with	nothing	on	them!Combining	all	Sheets	from	all	Open	Workbooks	to	a	Single	Worksheet	in	a	New	WorkbookThe	procedure	below
combines	the	information	from	all	the	sheets	in	all	open	workbooks	into	a	single	worksheet	in	a	new	workbook	that	is	created.The	information	from	each	sheet	is	pasted	into	the	destination	sheet	at	the	last	occupied	row	on	the	worksheet.Sub	CombineMultipleSheets()On	Error	GoTo	eh'declare	variables	to	hold	the	objects	required	Dim	wbDestination
As	Workbook	Dim	wbSource	As	Workbook	Dim	wsDestination	As	Worksheet	Dim	wb	As	Workbook	Dim	sh	As	Worksheet	Dim	strSheetName	As	String	Dim	strDestName	As	String	Dim	iRws	As	Integer	Dim	iCols	As	Integer	Dim	totRws	As	Integer	Dim	strEndRng	As	String	Dim	rngSource	As	Range'turn	off	the	screen	updating	to	speed	things	up
Application.ScreenUpdating	=	False'first	create	new	destination	workbook	Set	wbDestination	=	Workbooks.Add'get	the	name	of	the	new	workbook	so	you	exclude	it	from	the	loop	below	strDestName	=	wbDestination.Name'now	loop	through	each	of	the	workbooks	open	to	get	the	data	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName
And	wb.Name	"PERSONAL.XLSB"	Then	Set	wbSource	=	wb	For	Each	sh	In	wbSource.Worksheets'get	the	number	of	rows	and	columns	in	the	sheet	sh.Activate	ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate	iRws	=	ActiveCell.Row	iCols	=	ActiveCell.Column'set	the	range	of	the	last	cell	in	the	sheet	strEndRng	=	sh.Cells(iRws,
iCols).Address'set	the	source	range	to	copy	Set	rngSource	=	sh.Range("A1:"	&	strEndRng)'find	the	last	row	in	the	destination	sheet	wbDestination.Activate	Set	wsDestination	=	ActiveSheet	wsDestination.Cells.SpecialCells(xlCellTypeLastCell).Select	totRws	=	ActiveCell.Row'check	if	there	are	enough	rows	to	paste	the	data	If	totRws	+
rngSource.Rows.Count	>	wsDestination.Rows.Count	Then	MsgBox	"There	are	not	enough	rows	to	place	the	data	in	the	Consolidation	worksheet."	GoTo	eh	End	If'add	a	row	to	paste	on	the	next	row	down	If	totRws	1	Then	totRws	=	totRws	+	1	rngSource.Copy	Destination:=wsDestination.Range("A"	&	totRws)	Next	sh	End	If	Next	wb'now	close	all	the
open	files	except	the	one	you	want	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName	And	wb.Name	"PERSONAL.XLSB"	Then	wb.Close	False	End	If	Next	wb'clean	up	the	objects	to	release	the	memory	Set	wbDestination	=	Nothing	Set	wbSource	=	Nothing	Set	wsDestination	=	Nothing	Set	rngSource	=	Nothing	Set	wb	=	Nothing'turn
on	the	screen	updating	when	complete	Application.ScreenUpdating	=	FalseExit	Subeh:MsgBox	Err.DescriptionEnd	SubCombining	all	Sheets	from	all	Open	Workbooks	to	a	Single	Worksheet	in	an	Active	WorkbookIf	you	want	to	bring	the	information	from	all	other	open	Workbooks	in	to	the	one	you	are	currently	working	in,	you	can	use	this	code
below.Sub	CombineMultipleSheetsToExisting()	On	Error	GoTo	eh'declare	variables	to	hold	the	objects	required	Dim	wbDestination	As	Workbook	Dim	wbSource	As	Workbook	Dim	wsDestination	As	Worksheet	Dim	wb	As	Workbook	Dim	sh	As	Worksheet	Dim	strSheetName	As	String	Dim	strDestName	As	String	Dim	iRws	As	Integer	Dim	iCols	As	Integer
Dim	totRws	As	Integer	Dim	rngEnd	As	String	Dim	rngSource	As	Range'set	the	active	workbook	object	for	the	destination	book	Set	wbDestination	=	ActiveWorkbook'get	the	name	of	the	active	file	strDestName	=	wbDestination.Name'turn	off	the	screen	updating	to	speed	things	up	Application.ScreenUpdating	=	False'first	create	new	destination
worksheet	in	your	Active	workbook	Application.DisplayAlerts	=	False'resume	next	error	in	case	sheet	doesn't	exist	On	Error	Resume	Next	ActiveWorkbook.Sheets("Consolidation").Delete'reset	error	trap	to	go	to	the	error	trap	at	the	end	On	Error	GoTo	eh	Application.DisplayAlerts	=	True'add	a	new	sheet	to	the	workbook	With	ActiveWorkbook	Set
wsDestination	=	.Sheets.Add(After:=.Sheets(.Sheets.Count))	wsDestination.Name	=	"Consolidation"	End	With'now	loop	through	each	of	the	workbooks	open	to	get	the	data	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName	And	wb.Name	"PERSONAL.XLSB"	Then	Set	wbSource	=	wb	For	Each	sh	In	wbSource.Worksheets'get	the
number	of	rows	in	the	sheet	sh.Activate	ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate	iRws	=	ActiveCell.Row	iCols	=	ActiveCell.Column	rngEnd	=	sh.Cells(iRws,	iCols).Address	Set	rngSource	=	sh.Range("A1:"	&	rngEnd)'find	the	last	row	in	the	destination	sheet	wbDestination.Activate	Set	wsDestination	=	ActiveSheet
wsDestination.Cells.SpecialCells(xlCellTypeLastCell).Select	totRws	=	ActiveCell.Row'check	if	there	are	enough	rows	to	paste	the	data	If	totRws	+	rngSource.Rows.Count	>	wsDestination.Rows.Count	Then	MsgBox	"There	are	not	enough	rows	to	place	the	data	in	the	Consolidation	worksheet."	GoTo	eh	End	If'add	a	row	to	paste	on	the	next	row	down	if
you	are	not	in	row	1	If	totRws	1	Then	totRws	=	totRws	+	1	rngSource.Copy	Destination:=wsDestination.Range("A"	&	totRws)	Next	sh	End	If	Next	wb'now	close	all	the	open	files	except	the	one	you	want	For	Each	wb	In	Application.Workbooks	If	wb.Name	strDestName	And	wb.Name	"PERSONAL.XLSB"	Then	wb.Close	False	End	If	Next	wb'clean	up	the
objects	to	release	the	memory	Set	wbDestination	=	Nothing	Set	wbSource	=	Nothing	Set	wsDestination	=	Nothing	Set	rngSource	=	Nothing	Set	wb	=	Nothing'turn	on	the	screen	updating	when	complete	Application.ScreenUpdating	=	FalseExit	Subeh:MsgBox	Err.DescriptionEnd	Sub	Stop	searching	for	VBA	code	online.	Learn	more	about	AutoMacro
-	A	VBA	Code	Builder	that	allows	beginners	to	code	procedures	from	scratch	with	minimal	coding	knowledge	and	with	many	time-saving	features	for	all	users!	Learn	More!	Below	is	the	VBA	code	to	merge	multiple	excel	files	which	are	entered	in	a	folder	in	D	Drive	&	the	Folder	name	is	Files.	So	if	your	folder	name	is	different	then	you	can	change	the
path	according	to	your	drive.	Input	Data	Final	Output	After	Merge	VBA	CODE	Sub	MergeWorkbooks()Dim	FolderPath	As	StringDim	File	As	StringDim	i	As	LongFolderPath	=	"D:\Files\"File	=	Dir(FolderPath)Do	While	File	""	Workbooks.Open	FolderPath	&	File	ActiveWorkbook.Worksheets(1).Copy	_
after:=ThisWorkbook.Worksheets(ThisWorkbook.Worksheets.Count)	ActiveSheet.Name	=	Replace(File,	".xlsx",	"")	Workbooks(File).Close	File	=	Dir()LoopEnd	Sub	This	VBA	code	will	help	you	to	consolidate	the	All	Excel	Sheets	data	in	One	File,	but	the	limitation	is	that	if	you	excel	data	in	one	file	but	different-different	sheets.	then	this	code	will
consolidate	all	sheets	data	from	one	to	a	single	sheet.	Input	Data	Final	Output	After	Merge	VBA	CODE	Sub	CombineSheets()	Dim	ws	As	Worksheet	Dim	combinedSheet	As	Worksheet	Dim	lastRow	As	Long,	combinedLastRow	As	Long	Dim	sheetName	As	String	'	Add	a	new	sheet	to	store	combined	data	Set	combinedSheet	=
ThisWorkbook.Sheets.Add(After:=	_	ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))	combinedSheet.Name	=	"MergedData"	'	Loop	through	each	sheet	in	the	workbook	For	Each	ws	In	ThisWorkbook.Worksheets	'	Skip	the	combined	sheet	itself	If	ws.Name	combinedSheet.Name	Then	'	Get	the	last	row	of	data	in	the	combined	sheet
combinedLastRow	=	combinedSheet.Cells(Rows.Count,	"A").End(xlUp).Row	'	Get	the	sheet	name	sheetName	=	ws.Name	'	Loop	through	each	row	of	data	in	the	current	sheet	For	lastRow	=	1	To	ws.Cells(Rows.Count,	"A").End(xlUp).Row	'	Copy	data	to	the	combined	sheet	combinedSheet.Cells(combinedLastRow	+	lastRow	-	1,	1).Value	=	sheetName
ws.Rows(lastRow).Copy	Destination:=combinedSheet.Rows(combinedLastRow	+	lastRow	-	1)	Next	lastRow	End	If	Next	ws	MsgBox	"All	sheets	combined	successfully!",	vbInformationEnd	Sub	In	this	VBA	code	i	have	provided	a	Folder	picker,	that	means	when	you	run	this	VBA	code,	then	it	will	show	a	dialogue	box	that	will	ask	for	the	folder	path,	then
you	have	to	select	the	folder	from	which	you	want	to	combine	all	the	files	in	one	file.	after	clicking	the	folder	you	just	click	on	Ok	Button	then	the	process	will	start	and	all	excel	files	will	be	merged	into	one	excel	file	but	in	different-different	sheets.	Merge	with	Folder	Picker	Final	Output	After	Merge	VBA	CODE	Sub	CombineWorkbooks()	Dim	myDialog
As	FileDialog,	myFolder	As	String,	myFile	As	String	Set	myDialog	=	Application.FileDialog(msoFileDialogFolderPicker)	If	myDialog.Show	=	-1	Then	myFolder	=	myDialog.SelectedItems(1)	&	Application.PathSeparator	myFile	=	Dir(myFolder	&	"*.xls*")	Do	While	myFile	""	Workbooks.Open	myFolder	&	myFile	Workbooks(myFile).Worksheets.Copy
After:=ThisWorkbook.ActiveSheet	Workbooks(myFile).Close	myFile	=	Dir	LoopEnd	If	End	Sub	This	VBA	code	will	help	you	to	merge	all	Excel	Files	data	from	a	specific	folder,	into	one	Excel	file.	In	the	below	VBA	code,	i	have	given	a	folder	path	in	D	Drive,	which	contains	a	Folder	with	the	name	Files.	So	if	your	folder	name	is	different	then	you	can
change	the	path	according	to	your	drive.	Input	Data	Final	Output	After	Merge	VBA	CODE	Sub	MergeDataFromFolder()Dim	copiedsheetcount	As	LongDim	rowcnt	As	LongDim	merged	As	WorkbookDim	wb	As	WorkbookDim	ws	As	Worksheetfilefolder	=	"D:\Files\"Filename	=	Dir(filefolder	&	"*.xlsx")If	Filename	=	vbNullString	ThenMsgBox
prompt:="No	File",	Buttons:=vbCritical,	Title:="error"Exit	SubEnd	Ifcopiedsheetcount	=	0rowcnt	=	1Set	merged	=	Workbooks.AddActiveSheet.Name	=	"Merged	Data"Do	While	Filename	vbNullStringcopiedsheetcount	=	copiehsheetcount	+	1Set	wb	=	Workbooks.Open(Filename:=filefolder	&	Filename,	UpdateLinks:=False)Set	ws	=
wb.Worksheets(1)With	wsIf	FilterMode	Then	.ShowAllDataIf	copiedsheetcount	>	1	Then	.Rows(1).EntireRow.Delete	shift:=xlUp.Range("a1").CurrentRegion.Copy	Destination:=merged.Worksheets(1).Cells(rowcnt,	1)End	Withwb.Close	savechanges:=Falserowcnt	=	Application.WorksheetFunction.CountA(merged.Worksheets(1).Columns("A:A"))	+
1Filename	=	DirLoopMsgBox	prompt:="File	Merged",	Buttons:=vbInformation,	Title:="Success"End	Sub	5.	Merge	All	Sheets	from	Multiple	Files	into	a	Single	Sheet	With	the	help	of	this	VBA	code,	you	can	combine	or	merge	multiple	Excel	files	and	their	sheets	of	data	into	one	Excel	sheet	with	one	click.	for	example,	you	have	12	months	of	salary	file
data	and	have	3	sheets	in	each	Excel	file,	in	the	1st	sheet	is	Delhi	Branch	Salary	Data,	in	the	2nd	sheet	Mumbai	Branch	Salary	Data	is	given	and	in	the	3rd	sheet,	Kolkata	Branch	Salary	data	is	given.	Now	i	want	to	combine	and	merge	all	the	branches	data	with	12	months,	which	means	i	want	to	append	36	sheets	of	data	in	one	sheet	then	you	should
try	this	code	to	append	all	sheets	of	data	into	one	Excel	sheet.	Input	Data	Final	Output	After	Merge	VBA	CODE	Sub	MergeAllFilesAndSheets()	Dim	folderPath	As	String	Dim	mergedWorkbook	As	Workbook	Dim	sourceWorkbook	As	Workbook	Dim	ws	As	Worksheet	Dim	fileName	As	String	Dim	mergedSheet	As	Worksheet	Dim	lastRow	As	Long	Dim
dataRange	As	Range	folderPath	=	"D:\Files\"	Set	mergedWorkbook	=	Workbooks.Add	Set	mergedSheet	=	mergedWorkbook.Sheets(1)	'	Made	by	TechGuruPlus.com	fileName	=	Dir(folderPath	&	"*.xlsx")	Do	While	fileName	""	Set	sourceWorkbook	=	Workbooks.Open(folderPath	&	fileName)	For	Each	ws	In	sourceWorkbook.Sheets	lastRow	=
mergedSheet.Cells(mergedSheet.Rows.Count,	1).End(xlUp).Row	+	1	mergedSheet.Cells(lastRow,	1).Resize(ws.UsedRange.Rows.Count,	1).Value	=	ws.Name	&	"	("	&	sourceWorkbook.Name	&	")"	ws.UsedRange.Copy	Destination:=mergedSheet.Cells(lastRow,	2)	Next	ws	sourceWorkbook.Close	False	fileName	=	Dir	Loop	mergedWorkbook.SaveAs
folderPath	&	"MergedWorkbook_WithSheetAndFileName.xlsx"	mergedWorkbook.Close	MsgBox	"All	sheets	from	all	files	merged	successfully",	vbInformationEnd	Sub	Download	Files	Tutorial	Video	6.	Merge	Specific	Sheets	from	Multiple	Files	into	a	Single	Sheet	VBA	CODE	Sub	MergeSpecificSheetsFromFiles()	Dim	folderPath	As	String	Dim
mergedWorkbook	As	Workbook	Dim	sourceWorkbook	As	Workbook	Dim	ws	As	Worksheet	Dim	fileName	As	String	Dim	mergedSheet	As	Worksheet	Dim	lastRow	As	Long	Dim	sheetName	As	String	Dim	sheetFound	As	Boolean	Dim	mergedFilePath	As	String	'	Prompt	user	to	enter	the	sheet	name	sheetName	=	InputBox("Enter	the	sheet	name	you	want
to	merge:",	"Sheet	Name")	If	sheetName	=	""	Then	MsgBox	"No	sheet	name	entered.	Exiting...",	vbExclamation	Exit	Sub	End	If	folderPath	=	"D:\Files\"	Set	mergedWorkbook	=	Workbooks.Add	Set	mergedSheet	=	mergedWorkbook.Sheets(1)	fileName	=	Dir(folderPath	&	"*.xls*")	'	Handles	both	.xls	and	.xlsx	extensions	sheetFound	=	False	Do	While
fileName	""	Set	sourceWorkbook	=	Workbooks.Open(folderPath	&	fileName)	On	Error	Resume	Next	Set	ws	=	sourceWorkbook.Sheets(sheetName)	On	Error	GoTo	0	If	Not	ws	Is	Nothing	Then	sheetFound	=	True	lastRow	=	mergedSheet.Cells(mergedSheet.Rows.Count,	1).End(xlUp).Row	+	1	mergedSheet.Cells(lastRow,
1).Resize(ws.UsedRange.Rows.Count,	1).Value	=	sourceWorkbook.Name	ws.UsedRange.Copy	Destination:=mergedSheet.Cells(lastRow,	2)	End	If	sourceWorkbook.Close	False	fileName	=	Dir	Loop	If	Not	sheetFound	Then	MsgBox	"This	sheet	is	not	found	in	any	file.",	vbExclamation	mergedWorkbook.Close	False	Exit	Sub	End	If	mergedFilePath	=
folderPath	&	"MergedWorkbook_"	&	sheetName	&	".xlsx"	mergedWorkbook.SaveAs	mergedFilePath	mergedWorkbook.Close	'	Open	the	merged	workbook	Workbooks.Open	mergedFilePath	MsgBox	"All	'"	&	sheetName	&	"'	sheets	from	all	files	merged	successfully",	vbInformationEnd	Sub	Download	VBA	Code	7.	Merge	Specific	Sheets	from	Multiple
Workbooks	to	Separate	Tabs	VBA	CODE	Sub	MergeSpecificSheetsToSeparateTabs()	Dim	folderPath	As	String	Dim	sourceWorkbook	As	Workbook	Dim	mergedWorkbook	As	Workbook	Dim	ws	As	Worksheet	Dim	sheetName	As	String	Dim	fileName	As	String	Dim	newSheet	As	Worksheet	Dim	sheetFound	As	Boolean	Dim	mergedFilePath	As	String	'
Prompt	user	to	enter	the	sheet	name	sheetName	=	InputBox("Enter	the	sheet	name	you	want	to	merge:",	"Sheet	Name")	If	sheetName	=	""	Then	MsgBox	"No	sheet	name	entered.	Exiting...",	vbExclamation	Exit	Sub	End	If	'	Set	the	folder	path	folderPath	=	"D:\Files\"	'	You	can	modify	this	to	your	folder	path	'	Create	a	new	workbook	to	hold	the	merged
sheets	Set	mergedWorkbook	=	Workbooks.Add	mergedWorkbook.Sheets(1).Name	=	"Temp"	'	Temporary	sheet	to	delete	later	fileName	=	Dir(folderPath	&	"*.xls*")	'	Handles	both	.xls	and	.xlsx	extensions	sheetFound	=	False	Do	While	fileName	""	Set	sourceWorkbook	=	Workbooks.Open(folderPath	&	fileName)	On	Error	Resume	Next	Set	ws	=
sourceWorkbook.Sheets(sheetName)	On	Error	GoTo	0	If	Not	ws	Is	Nothing	Then	sheetFound	=	True	'	Add	a	new	sheet	to	the	merged	workbook	Set	newSheet	=	mergedWorkbook.Sheets.Add(After:=mergedWorkbook.Sheets(mergedWorkbook.Sheets.Count))	newSheet.Name	=	Left(sourceWorkbook.Name,	31)	'	Sheet	names	are	limited	to	31
characters	'	Copy	the	content	of	the	specific	sheet	from	the	source	workbook	to	the	new	sheet	ws.UsedRange.Copy	Destination:=newSheet.Cells(1,	1)	End	If	sourceWorkbook.Close	False	fileName	=	Dir	Loop	'	Delete	the	temporary	sheet	if	at	least	one	sheet	was	found	If	sheetFound	Then	Application.DisplayAlerts	=	False
mergedWorkbook.Sheets("Temp").Delete	Application.DisplayAlerts	=	True	Else	MsgBox	"This	sheet	is	not	found	in	any	file.",	vbExclamation	mergedWorkbook.Close	False	Exit	Sub	End	If	'	Save	the	merged	workbook	mergedFilePath	=	folderPath	&	"MergedWorkbook_"	&	sheetName	&	".xlsx"	mergedWorkbook.SaveAs	mergedFilePath
mergedWorkbook.Close	'	Open	the	merged	workbook	Workbooks.Open	mergedFilePath	MsgBox	"All	'"	&	sheetName	&	"'	sheets	from	all	files	have	been	merged	into	separate	tabs.",	vbInformationEnd	Sub	Download	VBA	Code	Steps	to	use	VBA	code	to	merge	Excel	sheets	data	To	enter	the	above	VBA	code	follow	the	steps	as	given	below-	Go	to	VBA
Application	by	pressing	the	shortcut	ALT	+	F11	or	Right	click	on	any	sheet	name	and	click	on	View	Code.	Now	Insert	a	New	Module	(Go	to	Insert	Menu	and	Click	on	Module)	Now	Copy	the	above	VBA	code	and	Paste	in	the	Blank	Module	File.	Press	F5	Button	to	Run	the	Macro.	All	the	File	data	have	been	merged	into	one	file.	if	you	are	facing	any
problem	to	merge	your	data,	please	write	us	in	the	comment	box	below,	and	we	will	find	the	solution	for	your	query	and	answer	you.	Thanks	Join	Our	Telegram	Group	Join	Our	WhatsApp	Group	Sometimes	we	want	to	merge	multiple	sheets	into	one	sheet	so	that	we	can	easily	analyse	the	data	and	turn	it	into	some	useful	information.	This	articles	will
tell	you	how	to	merge	multiple	worksheets	into	one	worksheet	using	VBA.Example:Here	I	have	fetched	some	data	from	server	that	returns	data	into	different	worksheets.	I	have	added	one	more	sheet	and	named	it	as	Master.	Other	sheet	names	doesnt	matter.Now	run	this	macro.Sub	Merge_Sheets()Dim	startRow,	startCol,	lastRow,	lastCol	As
LongDim	headers	As	Range'Set	Master	sheet	for	consolidationSet	mtr	=	Worksheets("Master")Set	wb	=	ThisWorkbook'Get	HeadersSet	headers	=	Application.InputBox("Select	the	Headers",	Type:=8)'Copy	Headers	into	masterheaders.Copy	mtr.Range("A1")startRow	=	headers.Row	+	1startCol	=	headers.ColumnDebug.Print	startRow,	startCol'loop
through	all	sheetsFor	Each	ws	In	wb.Worksheets	'except	the	master	sheet	from	looping	If	ws.Name	"Master"	Then	ws.Activate	lastRow	=	Cells(Rows.Count,	startCol).End(xlUp).Row	lastCol	=	Cells(startRow,	Columns.Count).End(xlToLeft).Column	'get	data	from	each	worksheet	and	copy	it	into	Master	sheet	Range(Cells(startRow,	startCol),
Cells(lastRow,	lastCol)).Copy	_	mtr.Range("A"	&	mtr.Cells(Rows.Count,	1).End(xlUp).Row	+	1)	End	IfNext	wsWorksheets("Master").ActivateEnd	SubHow	to	merge	sheets	using	this	VBA	Macro?Insert	a	new	sheet	and	name	it	Master	in	the	workbook.	Rename	it	later	if	you	want.Insert	a	module	in	VBA	editor	and	copy	above	VBA	code.Run	the
macro.You	will	be	asked	to	select	headings.	Select	the	heading	and	hit	OK.And	it	is	done.	All	the	sheets	are	merged	in	master.How	it	works?I	assume	that	you	know	the	basics	of	object	and	variable	creation	in	VBA.	in	the	first	part	we	have	created	object	and	variables	that	we	will	need	in	our	operations.Well	most	of	the	things	I	have	explained	using
comments	in	vba	code.	Lets	look	at	the	main	part	of	this	vba	code.For	Each	ws	In	wb.Worksheets	'except	the	master	sheet	from	looping	If	ws.Name	"Master"	Then	ws.Activate	lastRow	=	Cells(Rows.Count,	startCol).End(xlUp).Row	lastCol	=	Cells(startRow,	Columns.Count).End(xlToLeft).Column	'get	data	from	each	worksheet	and	copy	it	into	Master
sheet	Range(Cells(startRow,	startCol),	Cells(lastRow,	lastCol)).Copy	_	mtr.Range("A"	&	mtr.Cells(Rows.Count,	1).End(xlUp).Row	+	1)	End	IfNext	wsIn	earlier	articles	we	learned	how	to	loop	through	sheets	and	how	to	get	last	row	and	column	using	vba.	Here	we	are	looping	through	each	sheet	in	main	workbook	using	for	loop.For	Each	ws	In
wb.WorksheetsThen	we	exclude	master	sheet	from	looping,	since	we	will	be	consolidating	our	data	in	that	sheet.Then	we	get	last	row	and	last	column	number.	Now	next	line	is	very	important.	We	have	done	multiple	operations	into	one	line.Range(Cells(startRow,	startCol),	Cells(lastRow,	lastCol)).Copy	_	mtr.Range("A"	&	mtr.Cells(Rows.Count,
1).End(xlUp).Row	+	1)First	we	form	a	range	using	startRow,	startCol	and	lastRow	and	lastCol.	Range(Cells(startRow,	startCol),	Cells(lastRow,	lastCol))We	have	copied	it	using	copy	method	of	range.Range(Cells(startRow,	startCol),	Cells(lastRow,	lastCol)).CopyWe	pasted	it	directly	into	first	blank	cell	after	last	non	blank	cell	in	column	A	of	master
sheet	(mtr.Cells(Rows.Count,	1).End(xlUp).Row	+	1).Range(Cells(startRow,	startCol),	Cells(lastRow,	lastCol)).Copy	_	mtr.Range("A"	&	mtr.Cells(Rows.Count,	1).End(xlUp).Row	+	1)This	loops	runs	for	all	the	sheets	and	copies	each	sheets	data	into	master	sheet.Finally,	in	the	end	of	the	macro	we	activate	the	mastersheet	to	see	the	output.So	yeah	guys,
this	is	how	you	can	merge	every	sheet	in	a	workbook.	Let	me	know	if	you	have	any	query	regarding	this	VBA	code	or	any	excel	topic	in	the	comments	section	below.Download	file:	Consolidate_Merge	multiple	worksheets	into	one	master	sheet	using	VBARelated	Articles:How	to	loop	through	sheetshow	to	get	last	row	and	column	using	vbaDelete	sheets
without	confirmation	prompts	using	VBA	in	Microsoft	ExcelAdd	And	Save	New	Workbook	Using	VBA	In	Microsoft	Excel	2016Display	A	Message	On	The	Excel	VBA	Status	BarTurn	Off	Warning	Messages	Using	VBA	In	Microsoft	Excel	2016Popular	Articles:The	VLOOKUP	Function	in	ExcelCOUNTIF	in	Excel	2016How	to	Use	SUMIF	Function	in	Excel
Copy	the	cell	ranges	that	you	want	to	move	into	the	master	workbook.	You	can	press	Ctrl	+	C	after	selecting	the	cell	range	or	go	to	the	Home	tab	and	click	on	the	Copy	command.Click	on	the	plus	icon	at	the	bottom	of	your	workbook.Press	Ctrl	+	V	to	paste	the	data	into	the	master	workbook.	Method	2	Copy	the	Worksheets	to	Combine	Multiple
Workbooks	into	One	Workbook	in	ExcelSelect	all	the	worksheets	that	you	want	to	move	or	copy	into	another	master	worksheet.	You	can	hold	the	Ctrl	key	and	manually	select	all	the	worksheets	using	your	mouse.Right-click	on	the	selection	area	and	a	list	will	pop	up.Choose	Move	or	Copy	from	the	list.The	Move	or	Copy	dialog	box	will	appear.	Select
the	workbook	where	you	want	to	move	or	copy.	This	option	is	available	in	the	To	Book	drop-down	box.Select	the	position	of	the	copied	or	moved	worksheets	in	the	new	workbook	under	the	Before	Sheet	command	text.The	selected	worksheets	are	moved	into	the	new	workbook	by	default.	If	you	want	to	copy	them,	check	the	Create	a	copy	check	box.Hit
the	OK	button.	Method	3	Use	the	INDIRECT	Function	to	Combine	Multiple	Workbooks	into	One	Workbook	in	ExcelInsert	the	File	Name,	Sheet	Name,	and	Cell	addresses	from	where	you	want	to	retrieve	data	in	the	destination	worksheet.Insert	the	following	formula	in	the	destination	cell	address	of	the	destination	workbook:	=INDIRECT("'["	&	B3	&
"]"	&	C3	&	"'!"	&	D3)	B3	contains	the	source	Excel	file	name.C3	holds	the	worksheet	name.D3	refers	to	the	cell	address	of	the	source	file	from	where	you	want	to	pull	data.Press	the	Enter	key.Drag	the	Fill	Handle	icon	to	the	cell	ranges	where	you	want	to	get	the	data	from	the	source	file.	Method	4	Use	the	CSV	File	Format	to	Combine	Multiple
Workbooks	into	One	Workbook	in	ExcelSave	each	of	the	Excel	files	in	CSV	file	format.Store	them	all	in	the	same	folder.Open	the	Command	Prompt.Navigate	to	the	folder	where	youve	stored	all	the	CSV	files.Enter	the	following	command.	Here,	Combined	is	an	arbitrary	file	name.	You	can	choose	whatever	you	like.	Open	the	Combined.csv	file.Save	as
a	normal	Excel	file	(.xlsx).	Method	5	Use	PowerQuery	to	Combine	Multiple	Workbooks	in	One	Workbook	in	ExcelStore	all	the	Excel	files	in	the	same	folder	to	combine	them	all	together.Go	to	the	Data	tab	from	the	main	ribbon.Choose	the	Get	Data	command.Navigate	to	From	File	and	to	From	Folder.Browse	the	folder	where	you	stored	all	the	Excel
files.Select	them	all	to	combine	into	one	master	workbook.	Method	6	Use	VBA	Code	to	Combine	Multiple	Workbooks	into	One	Workbook	in	ExcelPress	Alt	+	F11	to	open	the	VBA	editor.Go	to	Insert	and	selectModule	to	create	a	new	module.Copy	the	following	VBA	code	and	paste	it	into	the	VBA	editor.Sub	CombineMultipleFiles()Dim	x,	i	As	IntegerDim
y	As	FileDialogDim	m,	n	As	WorkbookDim	z	As	WorksheetSet	m	=	Application.ActiveWorkbookSet	y	=	Application.FileDialog(msoFileDialogFilePicker)y.AllowMultiSelect	=	Truex	=	y.ShowFor	i	=	1	To	y.SelectedItems.CountWorkbooks.Open	y.SelectedItems(i)Set	n	=	ActiveWorkbookFor	Each	z	In	n.Worksheetsz.Copy
after:=m.Sheets(m.Worksheets.Count)Next	zn.CloseNext	iEnd	SubSave	the	code	with	Ctrl	+	S.Hit	the	Run	Sub	button	or	press	the	F5	key	to	run	the	code.You	will	get	prompts	to	select	files.	Pick	as	many	Excel	files	as	you	want	to	combine	them	all	together.	Download	the	Practice	Workbook	Combine	Multiple	Workbooks	to	One.xlsm

