
	

https://jidowodise.pofezaf.com/545259240182444295439081698735019035050893?wavupuwodamasopibekotibijomiworigizodobubejoterogumejedopafudunudibitekewojejototolovul=fituvilegusesuxelofulekekalolafebobixulowoneraxexemoboledesunimidediduwupubopodalugiginugopuvepajenusikivikunomibesemawefazaputesokelavebinozedaxigukilopodapojagevatunixemuduzusawuzuliwakepovojudunisegexozeki&utm_kwd=stable+algorithm+examples&xadepimokuxajagemuwemugajiretezaxilelijuv=sefojizineselaperekolovalozoliwoditovukapuvejosiwebobukaxoxagozuberukurazaruvoxoxutisudorusavujudajoxabilumoti














Stable	algorithm	examples

As	of	ES2019,	sort	is	required	to	be	stable.	In	ECMAScript	1st	edition	through	ES2018,	it	was	allowed	to	be	unstable.	Simple	test	case	(ignore	the	heading,	second	set	of	numbers	should	be	sequential	if	the	engine's	sort	is	stable).	Note:	This	test	case	doesn't	work	for	some	versions	of	Chrome	(technically,	of	V8)	that	switched	sorting	algorithms	based
on	the	size	of	the	array,	using	a	stable	sort	for	small	arrays	but	an	unstable	one	for	larger	arrays.	(Details.)	See	the	end	of	the	question	for	a	modified	version	that	makes	the	array	large	enough	to	trigger	the	behavior.	IE's	sort	has	been	stable	as	long	as	I've	ever	used	it	(so	IE6).	Checking	again	in	IE8	and	it	appears	to	still	be	the	case.	And	although
that	Mozilla	page	you	link	to	says	Firefox's	sort	is	stable,	I	definitely	say	this	was	not	always	the	case	prior	to	(and	including)	Firefox	2.0.	Some	cursory	results:	IE6+:	stable	Firefox	<	3:	unstable	Firefox	>=	3:	stable	Chrome	<	70:	unstable	Chrome	>=	70:	stable	Opera	<	10:	unstable	Opera	>=	10:	stable	Safari	4:	stable	Edge:	unstable	for	long	arrays
(>512	elements)	All	tests	on	Windows.	See	also:	Fast	stable	sorting	algorithm	implementation	in	javascript	This	test	case	(modified	from	here)	will	demonstrate	the	problem	in	V8	(for	instance,	Node	v6,	Chrome	<	v70)	by	ensuring	the	array	has	enough	entries	to	pick	the	"more	efficient"	sort	method;	this	is	written	with	very	old	JavaScript	engines	in
mind,	so	without	modern	features:	function	Pair(_x,	_y)	{	this.x	=	_x;	this.y	=	_y;	}	function	pairSort(a,	b)	{	return	a.x	-	b.x;	}	var	y	=	0;	var	check	=	[];	while	(check.length	<	100)	{	check.push(new	Pair(Math.floor(Math.random()	*	3)	+	1,	++y));	}	check.sort(pairSort);	var	min	=	{};	var	issues	=	0;	for	(var	i	=	0;	i	<	check.length;	++i)	{	var	entry	=
check[i];	var	found	=	min[entry.x];	if	(found)	{	if	(found.y	>	entry.y)	{	console.log("Unstable	at	"	+	found.i	+	":	"	+	found.y	+	"	>	"	+	entry.y);	++issues;	}	}	else	{	min[entry.x]	=	{x:	entry.x,	y:	entry.y,	i:	i};	}	}	if	(!issues)	{	console.log("Sort	appears	to	be	stable");	}	I	think	that	an	example	with	sorting	a	struct,	rather	than	a	list	of	integers,	is	helpful	to
clarify	what	the	difference	is	between	both.	Imagine	a	list	of	neighbours	in	a	building,	that	you	construct	ordered	by	the	floor	where	they	live.	#include	#include	#include	struct	Neighbour	{	int	floor;	string	name;	Neighbour(int	f,	string	n)	:	floor(f),	name(n)	{}	};	std::vector	vec	=	{Neighbour(1,"Bob"),	Neighbour(2,"Anna"),	Neighbour(3,"Peter"),
Neighbour(4,"Bob"),	Neighbour(5,"Laura")};	1	Bob	2	Anna	3	Peter	4	Bob	5	Laura	If	you	now	want	to	sort	your	list	alphabetically,	and	you	use	std::sort(vec.begin(),	vec.end(),	[](Neighbour	a,	Neighbour	b){	return	a.name	<	b.name;	}	);	for(auto	v	:	vec)	std::cout


