
	

https://nipunojelav.gonujovux.com/200940329552571549895655433672132141638986?kofiguzifuvegoroximimuvegodo=sukabulevolotukorobetanozevavifuxosibiduzifuwaxituzoduwirexetomuxaxapekisidefewafujexorosinuramidizovowasipemiridefiwuladetezibarobajegavaxiwozubuzanidinixubafafulovedefasuworusebutitudasikukagemapasibufe&utm_term=concurrent+vs+parallel&togimitazofurilewuvigizinimimijanewemojaxikewinewu=vanexobisawufudedonodinixefapurexoterinofebideroresovawezijakinukakukovalazejulutesutujebetefizesunixazokugodipigeribigixitifedobawov

In	this	tutorial,	we’ll	analyze	two	common	processing	techniques	used	by	the	operating	system	(OS).	We	usually	need	these	two	concepts	when	we	have	multiple	processes	waiting	to	be	executed.	2.	Key	Definitions	Before	getting	into	too	much	detail	about	concurrency	and	parallelism,	let’s	have	a	look	at	the	key	definitions	used	in	the	descriptions	of
these	two	processing	methods:	Multiprocessing:	The	employment	of	two	or	more	central	processing	units	(CPUs)	within	a	single	computer	system	is	known	as	multiprocessing.	Multithreading:	This	technique	allows	a	single	process	to	have	multiple	code	segments,	like	threads.	These	segments	run	concurrently	within	the	context	of	that	process.
Distributed	Computing:	A	distributed	computing	system	consists	of	multiple	computer	systems	that	are	run	as	a	single	system.	The	computers	in	a	system	can	be	physically	close	to	each	other	and	connected	by	a	local	network,	or	they	can	be	distant	and	connected	by	a	wide	area	network.	Multicore	processor:	It’s	a	single	integrated	processor	that
includes	multiple	core	processing	units.	It’s	also	known	as	chip	multiprocessor	(CMP).	Pipelining:	It’s	a	technique	where	multiple	instructions	are	overlapped	during	execution.	3.	Concurrency	Concurrency	actually	means	that	multiple	tasks	can	be	executed	in	an	overlapping	time	period.	One	of	the	tasks	can	begin	before	the	preceding	one	is
completed;	however,	they	won’t	be	running	at	the	same	time.	The	CPU	will	adjust	time	slices	per	task	and	appropriately	switch	contexts.	That’s	why	this	concept	is	quite	complicated	to	implement	and	especially	debug.	3.1.	How	Does	Concurrency	Works?	The	main	aim	of	concurrency	is	to	maximize	the	CPU	by	minimizing	its	idle	time.	While	the
current	thread	or	process	is	waiting	for	input-output	operations,	database	transactions,	or	launching	an	external	program,	another	process	or	thread	receives	the	CPU	allocation.	On	the	kernel	side,	the	OS	sends	an	interrupt	to	the	active	task	to	stop	it:	If	two	or	more	jobs	are	running	on	the	same	core	of	a	single-core	or	multi-core	CPU,	they	can
access	the	same	resources	at	the	same	time.	Even	though	data	read	operations	are	performed	in	parallel	and	are	safe,	during	write	accesses,	programmers	must	maintain	data	integrity.	Efficient	process	scheduling	has	a	crucial	role	in	a	concurrent	system.	First-in,	first-out	(FIFO),	shortest-job-first	(SJF),	and	round-robin	(RR)	are	popular	task
scheduling	algorithms.	As	we	mentioned,	it	can	be	complicated	to	implement	and	debug	concurrency,	especially	at	the	kernel	level,	so	there	can	be	starvation	between	processes	when	one	of	the	tasks	gets	the	CPU	for	too	long.	In	order	to	prevent	this	situation,	interrupts	are	designed,	and	they	help	the	CPU	allocate	other	processes.	This	is	also	called
preemptive	scheduling.	The	OS,	like	any	other	application,	requires	CPU	time	to	adjust	concurrent	tasks.	4.	Parallelism	Parallelism	is	the	ability	to	execute	independent	tasks	of	a	program	in	the	same	instant	of	time.	Contrary	to	concurrent	tasks,	these	tasks	can	run	simultaneously	on	another	processor	core,	another	processor,	or	an	entirely	different
computer	that	can	be	a	distributed	system.	As	the	demand	for	computing	speed	from	real-world	applications	increases,	parallelism	becomes	more	common	and	affordable.	4.1.	How	the	Parallelism	Works?	The	figure	below	represents	an	example	of	distributed	systems.	As	we	previously	mentioned,	a	distributed	computing	system	consists	of	multiple
computer	systems,	but	it’s	run	as	a	single	system.	The	computers	that	are	in	a	system	can	be	physically	close	to	each	other	and	connected	by	a	local	network,	or	they	can	be	distant	and	connected	by	a	wide	area	network:	Parallelism	is	a	must	for	performance	gain.	There’s	more	than	one	benefit	of	parallelism,	and	we	can	implement	it	on	different
levels	of	abstractions:	As	we	can	see	in	the	figure	above,	distributed	systems	are	one	of	the	most	important	examples	of	parallel	systems.	They’re	basically	independent	computers	with	their	own	memory	and	IO.	For	example,	we	can	have	multiple	functional	units,	like	several	adders	and	multipliers,	managed	by	one	instruction	set.	Process	pipelining
is	another	example	of	parallelism.	Even	at	chip	level,	parallelism	can	increase	concurrency	in	operations.	We	can	also	take	advantage	of	parallelism	by	using	multiple	cores	on	the	same	computer.	This	makes	various	edge	devices,	like	mobile	phones,	possible.	5.	Concurrency	vs	Parallelism	Let’s	take	a	look	at	how	concurrency	and	parallelism	work
with	the	below	example.	As	we	can	see,	there	are	two	cores	and	two	tasks.	In	a	concurrent	approach,	each	core	is	executing	both	tasks	by	switching	among	them	over	time.	In	contrast,	the	parallel	approach	doesn’t	switch	among	tasks,	but	instead	executes	them	in	parallel	over	time:	This	simple	example	for	concurrent	processing	can	be	any	user-
interactive	program,	like	a	text	editor.	In	such	a	program,	there	can	be	some	IO	operations	that	waste	CPU	cycles.	When	we	save	a	file	or	print	it,	the	user	can	concurrently	type.	The	main	thread	launches	many	threads	for	typing,	saving,	and	similar	activities	concurrently.	They	may	run	in	the	same	time	period;	however,	they	aren’t	actually	running
in	parallel.	In	contrast,	we	can	give	an	example	of	Hadoop-based	distributed	data	processing	for	a	parallel	system.	It	entails	large-scale	data	processing	on	many	clusters	and	it	uses	parallel	processors.	Programmers	see	the	entire	system	as	a	single	database.	5.1.	Potential	Pitfalls	in	Concurrency	and	Parallelism	As	we	noted	earlier	in	this	tutorial,
concurrency	and	parallelism	are	complex	ideas	and	require	advanced	development	skills.	Otherwise,	there	could	be	some	potential	risks	that	jeopardize	the	system’s	reliability.	For	example,	if	we	don’t	carefully	design	the	concurrent	environment,	there	can	be	deadlocks,	race	conditions,	or	starvation.	Similarly,	we	should	also	be	careful	when	we’re
doing	parallel	programming.	We	need	to	know	where	to	stop	and	what	to	share.	Otherwise,	we	could	face	memory	corruption,	leaks,	or	errors.	5.2.	Programming	Languages	That	Support	Concurrency	and	Parallelism	Simultaneously	executing	processes	and	threads	is	the	main	idea	that	concurrent	programming	languages	use.	On	the	other	hand,
languages	that	support	parallelism	make	programming	constructs	able	to	be	executed	on	more	than	one	machine.	Instruction	and	data	stream	are	key	terms	for	the	parallelism	taxonomy.	These	languages	include	some	important	concepts.	Instead	of	learning	the	language	itself,	it	would	be	better	to	understand	the	fundamentals	of	these	subjects:
Systems	programming:	It’s	basic	OS	and	hardware	management	that	can	include	system	call	implementation	and	writing	a	new	scheduler	for	an	OS.	Distributed	computing:	As	we	mentioned	earlier,	it’s	a	must	for	parallel	CPUs	to	be	utilized.	Performance	computing:	This	concept	is	necessary	for	CPU	resource	optimization.	Now	let’s	categorize	the
different	languages,	frameworks,	and	APIs:	Shared	memory	languages:	Orca,	Java,	C	(with	some	additional	libraries)	Object-oriented	parallelism:	Java,	C++,	Nexus	Distributed	memory:	MPI,	Concurrent	C,	Ada	Message	passing:	Go,	Rust	Parallel	functional	languages:	LISP	Frameworks	and	APIs:	Spark,	Hadoop	These	are	just	some	of	the	different
languages	which	we	can	use	for	concurrency	and	parallelism.	Instead	of	the	whole	language	itself,	there	are	library	extensions,	such	as	POSIX	thread	library	for	C	programming	language.	With	this	library,	we	can	implement	almost	all	of	the	concurrent	programming	concepts,	such	as	semaphores,	multi-threads,	and	condition	variables.	6.	Conclusion
In	this	article,	we	discussed	how	concurrency	and	parallelism	work,	and	the	differences	between	them.	We	shared	some	examples	related	to	these	two	concepts	and	explained	why	we	need	them	in	the	first	place.	Lastly,	we	gave	a	brief	summary	of	the	potential	pitfalls	in	concurrency	and	parallelism	and	listed	the	programming	languages	that	support
these	two	important	concepts.	I	believe	this	answer	to	be	more	correct	than	the	existing	answers	and	editing	them	would	have	changed	their	essence.	I	have	tried	to	link	to	various	sources	or	wikipedia	pages	so	others	can	affirm	correctness.	Concurrency:	the	property	of	a	system	which	enables	units	of	the	program,	algorithm,	or	problem	to	be
executed	out-of-order	or	in	partial	order	without	affecting	the	final	outcome	1	2.	A	simple	example	of	this	is	consecutive	additions:	0	+	1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	=	45	Due	to	the	commutative	property	of	addition	the	order	of	these	can	be	re-arranged	without	affecting	correctness;	the	following	arrangement	will	result	in	the	same	answer:	(1	+
9)	+	(2	+	8)	+	(3	+	7)	+	(4	+	6)	+	5	+	0	=	45	Here	I	have	grouped	numbers	into	pairs	that	will	sum	to	10,	making	it	easier	for	me	to	arrive	at	the	correct	answer	in	my	head.	Parallel	Computing:	a	type	of	computation	in	which	many	calculations	or	the	execution	of	processes	are	carried	out	simultaneously	3	4.	Thus	parallel	computing	leverages	the
property	of	concurrency	to	execute	multiple	units	of	the	program,	algorithm,	or	problem	simultaneously.	Continuing	with	the	example	of	consecutive	additions,	we	can	execute	different	portions	of	the	sum	in	parallel:	Execution	unit	1:	0	+	1	+	2	+	3	+	4	=	10	Execution	unit	2:	5	+	6	+	7	+	8	+	9	=	35	Then	at	the	end	we	sum	the	results	from	each
worker	to	get	10	+	35	=	45.	Again,	this	parallelism	was	only	possible	because	consecutive	additions	have	the	property	of	concurrency.	Concurrency	can	be	leveraged	by	more	than	just	parallelism	though.	Consider	pre-emption	on	a	single-core	system:	over	a	period	of	time	the	system	may	make	progress	on	multiple	running	processes	without	any	of
them	finishing.	Indeed,	your	example	of	asyncronous	I/O	is	a	common	example	of	concurrency	that	does	not	require	parallelism.	Confusion	The	above	is	relatively	straightforward.	I	suspect	people	get	confused	because	the	dictionary	definitions	do	not	necessarily	match	what	was	outlined	above:	Concurrent:	occurring	or	existing	simultaneously	or	side
by	side	5.	Concurrency:	the	fact	of	two	or	more	events	or	circumstances	happening	or	existing	at	the	same	time	From	searching	on	google:	"define:	concurrency".	The	dictionary	defines	"concurrency"	as	a	fact	of	occurrence,	whereas	the	definition	in	the	computing	vernacular	is	a	latent	property	of	a	program,	property,	or	system.	Though	related	these
things	are	not	the	same.	Personal	Recommendations	I	recommend	using	the	term	"parallel"	when	the	simultaneous	execution	is	assured	or	expected,	and	to	use	the	term	"concurrent"	when	it	is	uncertain	or	irrelevant	if	simultaneous	execution	will	be	employed.	I	would	therefore	describe	simulating	a	jet	engine	on	multiple	cores	as	parallel.	I	would
describe	Makefiles	as	an	example	of	concurrency.	Makefiles	state	the	dependencies	of	each	target.	When	targets	depend	on	other	targets	this	creates	a	partial	ordering.	When	the	relationships	and	recipes	are	comprehensively	and	correctly	defined	this	establishes	the	property	of	concurrency:	there	exists	a	partial	order	such	that	order	of	certain
tasks	can	be	re-arranged	without	affecting	the	result.	Again,	this	concurrency	can	be	leveraged	to	build	multiple	rules	simultaneously	but	the	concurrency	is	a	property	of	the	Makefile	whether	parallelism	is	employed	or	not.	The	terms	concurrency	and	parallelism	are	often	used	in	relation	to	multithreaded	programs.	On	the	surface,	it	may	seem	as	if
concurrency	and	parallelism	may	be	referring	to	the	same	concepts.	However,	concurrency	and	parallelism	actually	have	different	meanings.	In	this	concurrency	vs.	parallelism	tutorial	I	will	explain	what	these	concepts	mean.	Just	to	be	clear,	in	this	text	I	look	at	concurrency	and	parallelism	within	a	single	application	-	a	single	process.	Not	among
multiple	applications,	processes	or	computers.	Concurrency	vs	Parallelism	Tutorial	Video	If	you	prefer	video,	I	have	a	video	version	of	this	tutorial	here:	Concurrency	vs	Parallelism	Tutorial	Video	Concurrency	Concurrency	means	that	an	application	is	making	progress	on	more	than	one	task	-	at	the	same	time	or	at	least	seemingly	at	the	same	time
(concurrently).	If	the	computer	only	has	one	CPU	the	application	may	not	make	progress	on	more	than	one	task	at	exactly	the	same	time,	but	more	than	one	task	is	in	progress	at	a	time	inside	the	application.	To	make	progress	on	more	than	one	task	concurrently	the	CPU	switches	between	the	different	tasks	during	execution.	This	is	illustrated	in	the
diagram	below:	Parallel	Execution	Parallel	execution	is	when	a	computer	has	more	than	one	CPU	or	CPU	core,	and	makes	progress	on	more	than	one	task	simultaneously.	However,	parallel	execution	is	not	referring	to	the	same	phenomenon	as	parallelism.	I	will	get	back	to	parallelism	later.	Parallel	execution	is	illustrated	below:	Parallel	Concurrent
Execution	It	is	possible	to	have	parallel	concurrent	execution,	where	threads	are	distributed	among	multiple	CPUs.	Thus,	the	threads	executed	on	the	same	CPU	are	executed	concurrently,	whereas	threads	executed	on	different	CPUs	are	executed	in	parallel.	The	diagram	below	illustrates	parallel	concurrent	execution.	Parallelism	The	term
parallelism	means	that	an	application	splits	its	tasks	up	into	smaller	subtasks	which	can	be	processed	in	parallel,	for	instance	on	multiple	CPUs	at	the	exact	same	time.	Thus,	parallelism	does	not	refer	to	the	same	execution	model	as	parallel	concurrent	execution	-	even	if	they	may	look	similar	on	the	surface.	To	achieve	true	parallelism	your
application	must	have	more	than	one	thread	running	-	and	each	thread	must	run	on	separate	CPUs	/	CPU	cores	/	graphics	card	GPU	cores	or	similar.	The	diagram	below	illustrates	a	bigger	task	which	is	being	split	up	into	4	subtasks.	These	4	subtasks	are	being	executed	by	4	different	threads,	which	run	on	2	different	CPUs.	This	means,	that	parts	of
these	subtasks	are	executed	concurrently	(those	executed	on	the	same	CPU),	and	parts	are	executed	in	parallel	(those	executed	on	different	CPUs).	If	instead	the	4	subtasks	were	executed	by	4	threads	running	on	each	their	own	CPU	(4	CPUs	in	total),	then	the	task	execution	would	have	been	fully	parallel.	However,	it	is	not	always	easy	to	break	a
task	into	exactly	as	many	subtasks	as	the	number	of	CPUs	available.	Often,	it	is	easier	to	break	a	task	into	a	number	of	subtasks	which	fit	naturally	with	the	task	at	hand,	and	then	let	the	thread	scheduler	take	care	of	distributing	the	threads	among	the	available	CPUs.	Concurrency	and	Parallelism	Combinations	To	recap,	concurrency	refers	to	how	a
single	CPU	can	make	progress	on	multiple	tasks	seemingly	at	the	same	time	(AKA	concurrently).	Parallelism	on	the	other	hand,	is	related	to	how	an	application	can	parallelize	the	execution	of	a	single	task	-	typically	by	splitting	the	task	up	into	subtasks	which	can	be	completed	in	parallel.	These	two	execution	styles	can	be	combined	within	the	same
application.	I	will	cover	some	of	these	combinations	below.	Concurrent,	Not	Parallel	An	application	can	be	concurrent,	but	not	parallel.	This	means	that	it	makes	progress	on	more	than	one	task	seemingly	at	the	same	time	(concurrently),	but	the	application	switches	between	making	progress	on	each	of	the	tasks	-	until	the	tasks	are	completed.	There
is	no	true	parallel	execution	of	tasks	going	in	parallel	threads	/	CPUs.	Parallel,	Not	Concurrent	An	application	can	also	be	parallel	but	not	concurrent.	This	means	that	the	application	only	works	on	one	task	at	a	time,	and	this	task	is	broken	down	into	subtasks	which	can	be	processed	in	parallel.	However,	each	task	(+	subtask)	is	completed	before	the
next	task	is	split	up	and	executed	in	parallel.	Neither	Concurrent	Nor	Parallel	Additionally,	an	application	can	be	neither	concurrent	nor	parallel.	This	means	that	it	works	on	only	one	task	at	a	time,	and	the	task	is	never	broken	down	into	subtasks	for	parallel	execution.	This	could	be	the	case	for	small	command	line	applications	where	it	only	has	a
single	job	which	is	too	small	to	make	sense	to	parallelize.	Concurrent	and	Parallel	Finally,	an	application	can	also	be	both	concurrent	and	parallel	in	two	ways:	The	first	is	simple	parallel	concurrent	execution.	This	is	what	happens	if	an	application	starts	up	multiple	threads	which	are	then	executed	on	multiple	CPUs.	The	second	way	is	that	the
application	both	works	on	multiple	tasks	concurrently,	and	also	breaks	each	task	down	into	subtasks	for	parallel	execution.	However,	some	of	the	benefits	of	concurrency	and	parallelism	may	be	lost	in	this	scenario,	as	the	CPUs	in	the	computer	are	already	kept	reasonably	busy	with	either	concurrency	or	parallelism	alone.	Combining	it	may	lead	to
only	a	small	performance	gain	or	even	performance	loss.	Make	sure	you	analyze	and	measure	before	you	adopt	a	concurrent	parallel	model	blindly.	I	believe	this	answer	to	be	more	correct	than	the	existing	answers	and	editing	them	would	have	changed	their	essence.	I	have	tried	to	link	to	various	sources	or	wikipedia	pages	so	others	can	affirm
correctness.	Concurrency:	the	property	of	a	system	which	enables	units	of	the	program,	algorithm,	or	problem	to	be	executed	out-of-order	or	in	partial	order	without	affecting	the	final	outcome	1	2.	A	simple	example	of	this	is	consecutive	additions:	0	+	1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	=	45	Due	to	the	commutative	property	of	addition	the	order	of
these	can	be	re-arranged	without	affecting	correctness;	the	following	arrangement	will	result	in	the	same	answer:	(1	+	9)	+	(2	+	8)	+	(3	+	7)	+	(4	+	6)	+	5	+	0	=	45	Here	I	have	grouped	numbers	into	pairs	that	will	sum	to	10,	making	it	easier	for	me	to	arrive	at	the	correct	answer	in	my	head.	Parallel	Computing:	a	type	of	computation	in	which	many
calculations	or	the	execution	of	processes	are	carried	out	simultaneously	3	4.	Thus	parallel	computing	leverages	the	property	of	concurrency	to	execute	multiple	units	of	the	program,	algorithm,	or	problem	simultaneously.	Continuing	with	the	example	of	consecutive	additions,	we	can	execute	different	portions	of	the	sum	in	parallel:	Execution	unit	1:	0
+	1	+	2	+	3	+	4	=	10	Execution	unit	2:	5	+	6	+	7	+	8	+	9	=	35	Then	at	the	end	we	sum	the	results	from	each	worker	to	get	10	+	35	=	45.	Again,	this	parallelism	was	only	possible	because	consecutive	additions	have	the	property	of	concurrency.	Concurrency	can	be	leveraged	by	more	than	just	parallelism	though.	Consider	pre-emption	on	a	single-
core	system:	over	a	period	of	time	the	system	may	make	progress	on	multiple	running	processes	without	any	of	them	finishing.	Indeed,	your	example	of	asyncronous	I/O	is	a	common	example	of	concurrency	that	does	not	require	parallelism.	Confusion	The	above	is	relatively	straightforward.	I	suspect	people	get	confused	because	the	dictionary
definitions	do	not	necessarily	match	what	was	outlined	above:	Concurrent:	occurring	or	existing	simultaneously	or	side	by	side	5.	Concurrency:	the	fact	of	two	or	more	events	or	circumstances	happening	or	existing	at	the	same	time	From	searching	on	google:	"define:	concurrency".	The	dictionary	defines	"concurrency"	as	a	fact	of	occurrence,
whereas	the	definition	in	the	computing	vernacular	is	a	latent	property	of	a	program,	property,	or	system.	Though	related	these	things	are	not	the	same.	Personal	Recommendations	I	recommend	using	the	term	"parallel"	when	the	simultaneous	execution	is	assured	or	expected,	and	to	use	the	term	"concurrent"	when	it	is	uncertain	or	irrelevant	if
simultaneous	execution	will	be	employed.	I	would	therefore	describe	simulating	a	jet	engine	on	multiple	cores	as	parallel.	I	would	describe	Makefiles	as	an	example	of	concurrency.	Makefiles	state	the	dependencies	of	each	target.	When	targets	depend	on	other	targets	this	creates	a	partial	ordering.	When	the	relationships	and	recipes	are
comprehensively	and	correctly	defined	this	establishes	the	property	of	concurrency:	there	exists	a	partial	order	such	that	order	of	certain	tasks	can	be	re-arranged	without	affecting	the	result.	Again,	this	concurrency	can	be	leveraged	to	build	multiple	rules	simultaneously	but	the	concurrency	is	a	property	of	the	Makefile	whether	parallelism	is
employed	or	not.	I	believe	this	answer	to	be	more	correct	than	the	existing	answers	and	editing	them	would	have	changed	their	essence.	I	have	tried	to	link	to	various	sources	or	wikipedia	pages	so	others	can	affirm	correctness.	Concurrency:	the	property	of	a	system	which	enables	units	of	the	program,	algorithm,	or	problem	to	be	executed	out-of-
order	or	in	partial	order	without	affecting	the	final	outcome	1	2.	A	simple	example	of	this	is	consecutive	additions:	0	+	1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	=	45	Due	to	the	commutative	property	of	addition	the	order	of	these	can	be	re-arranged	without	affecting	correctness;	the	following	arrangement	will	result	in	the	same	answer:	(1	+	9)	+	(2	+	8)	+
(3	+	7)	+	(4	+	6)	+	5	+	0	=	45	Here	I	have	grouped	numbers	into	pairs	that	will	sum	to	10,	making	it	easier	for	me	to	arrive	at	the	correct	answer	in	my	head.	Parallel	Computing:	a	type	of	computation	in	which	many	calculations	or	the	execution	of	processes	are	carried	out	simultaneously	3	4.	Thus	parallel	computing	leverages	the	property	of
concurrency	to	execute	multiple	units	of	the	program,	algorithm,	or	problem	simultaneously.	Continuing	with	the	example	of	consecutive	additions,	we	can	execute	different	portions	of	the	sum	in	parallel:	Execution	unit	1:	0	+	1	+	2	+	3	+	4	=	10	Execution	unit	2:	5	+	6	+	7	+	8	+	9	=	35	Then	at	the	end	we	sum	the	results	from	each	worker	to	get	10
+	35	=	45.	Again,	this	parallelism	was	only	possible	because	consecutive	additions	have	the	property	of	concurrency.	Concurrency	can	be	leveraged	by	more	than	just	parallelism	though.	Consider	pre-emption	on	a	single-core	system:	over	a	period	of	time	the	system	may	make	progress	on	multiple	running	processes	without	any	of	them	finishing.
Indeed,	your	example	of	asyncronous	I/O	is	a	common	example	of	concurrency	that	does	not	require	parallelism.	Confusion	The	above	is	relatively	straightforward.	I	suspect	people	get	confused	because	the	dictionary	definitions	do	not	necessarily	match	what	was	outlined	above:	Concurrent:	occurring	or	existing	simultaneously	or	side	by	side	5.
Concurrency:	the	fact	of	two	or	more	events	or	circumstances	happening	or	existing	at	the	same	time	From	searching	on	google:	"define:	concurrency".	The	dictionary	defines	"concurrency"	as	a	fact	of	occurrence,	whereas	the	definition	in	the	computing	vernacular	is	a	latent	property	of	a	program,	property,	or	system.	Though	related	these	things
are	not	the	same.	Personal	Recommendations	I	recommend	using	the	term	"parallel"	when	the	simultaneous	execution	is	assured	or	expected,	and	to	use	the	term	"concurrent"	when	it	is	uncertain	or	irrelevant	if	simultaneous	execution	will	be	employed.	I	would	therefore	describe	simulating	a	jet	engine	on	multiple	cores	as	parallel.	I	would	describe
Makefiles	as	an	example	of	concurrency.	Makefiles	state	the	dependencies	of	each	target.	When	targets	depend	on	other	targets	this	creates	a	partial	ordering.	When	the	relationships	and	recipes	are	comprehensively	and	correctly	defined	this	establishes	the	property	of	concurrency:	there	exists	a	partial	order	such	that	order	of	certain	tasks	can	be
re-arranged	without	affecting	the	result.	Again,	this	concurrency	can	be	leveraged	to	build	multiple	rules	simultaneously	but	the	concurrency	is	a	property	of	the	Makefile	whether	parallelism	is	employed	or	not.	For	DevelopersApril	16,	2025Tired	of	slow	apps?	It	might	be	a	concurrency	vs.	parallelism	issue.	Concurrency	switches	between	tasks,	while
parallelism	runs	them	simultaneously.	Learn	when	to	use	each.Have	you	ever	wondered	why	your	computer	can	run	multiple	programs	at	once?	Or	how	your	app	handles	so	many	user	requests	simultaneously?	There	are	two	powerful	concepts	in	play	here:	concurrency	and	parallelism.These	terms	get	mixed	up	all	the	time,	even	by	experienced
developers.	And	yes,	they	both	aim	to	make	our	programs	faster	and	more	efficient,	but	they	work	in	fundamentally	different	ways.Think	of	it	like	this:	concurrency	is	about	dealing	with	lots	of	things	at	once,	while	parallelism	is	about	doing	lots	of	things	at	once.	Subtle	difference,	right?	But	understanding	this	distinction	can	completely	change	how
you	approach	problem-solving	in	your	code.What	if	I	told	you	that	sometimes	you	need	concurrency	without	parallelism?	Or	that	throwing	more	CPU	cores	at	a	problem	isn't	always	the	answer?Let's	break	down	these	concepts	in	simple	terms,	see	how	they	work	in	the	real	world,	and	figure	out	which	approach	makes	the	most	sense	for	your	next
project.	Ready	to	untangle	this	confusion	once	and	for	all?Ready	to	build	faster,	more	efficient	apps?	Join	Index.dev	and	match	with	top	global	companies	seeking	your	concurrency	and	parallelism	expertise.	Apply	now!What	Is	Concurrency?Concurrency	is	about	structuring	your	program	to	handle	multiple	tasks	that	overlap	in	time.	But	here's	the
key:	these	tasks	don't	necessarily	run	at	the	exact	same	moment.	Instead,	the	system	switches	between	them,	giving	each	task	a	little	attention	before	moving	to	the	next.Let's	look	at	that	web	server	example:User	1	requests	data	from	the	server.User	2	uploads	a	file.User	3	retrieves	images.Without	concurrency,	each	request	would	have	to	wait	until
the	previous	one	is	finished.	But	with	concurrency:The	server	starts	processing	User	1’s	request.While	waiting	for	the	database	to	respond,	it	moves	on	to	User	2’s	file	upload.While	waiting	for	the	file	to	upload,	it	starts	fetching	User	3’s	images.The	CPU	keeps	switching	between	these	tasks	until	they’re	all	complete.This	makes	the	system	much
faster,	especially	on	single-core	processors,	where	only	one	task	can	truly	run	at	a	time.	But	concurrency	is	also	useful	in	multi-core	environments.Here’s	a	simple	example	using	Python’s	asyncio	module	to	run	multiple	tasks	concurrently:import	asyncio	async	def	fetch_data():				print("Fetching	data...")				await	asyncio.sleep(2)		#	Simulate	network
delay				print("Data	retrieved!")	async	def	upload_file():				print("Uploading	file...")				await	asyncio.sleep(3)		#	Simulate	file	upload				print("File	uploaded!")	async	def	main():				await	asyncio.gather(fetch_data(),	upload_file())		#	Run	tasks	concurrently	asyncio.run(main())How	it	works:fetch_data()	and	upload_file()	are	asynchronous	functions.Instead	of
waiting	for	one	to	finish	before	starting	the	other,	asyncio.gather()	lets	them	run	concurrently.The	program	switches	between	tasks	while	waiting,	making	better	use	of	time	and	system	resources.This	approach	makes	applications	like	web	servers,	chat	apps,	and	data	processing	pipelines	much	more	efficient.Different	Concurrency	ModelsAs
applications	become	more	complex,	developers	have	evolved	different	approaches	to	handling	concurrent	tasks.	Each	model	has	its	own	strengths	and	ideal	use	cases:1.	Cooperative	MultitaskingThink	of	this	as	a	friendly	system	where	tasks	voluntarily	take	turns.	Each	task	runs	until	it	reaches	a	natural	stopping	point	(like	waiting	for	user	input	or
network	data).	Then,	it	hands	over	control	to	another	task.	This	makes	it	easy	to	manage	since	the	tasks	themselves	decide	when	to	step	aside.Where	Is	It	Used?Lightweight	embedded	systemsEarly	versions	of	Microsoft	Windows	(Windows	3.x)	and	Classic	Mac	OSCoroutines	in	languages	like	Python	(asyncio)	and	KotlinExampleIf	you’ve	used
Python’s	asyncio,	you’ve	worked	with	cooperative	multitasking.	Here’s	a	simple	coroutine	example:import	asyncio	async	def	task1():				print("Task	1	started")				await	asyncio.sleep(2)				print("Task	1	finished")	async	def	task2():				print("Task	2	started")				await	asyncio.sleep(1)				print("Task	2	finished")	async	def	main():				await	asyncio.gather(task1(),
task2())	asyncio.run(main())Here,	task1	and	task2	voluntarily	pause	(await	asyncio.sleep())	so	other	tasks	can	run,	making	the	program	more	efficient.2.	Preemptive	MultitaskingUnlike	cooperative	multitasking,	this	model	doesn’t	rely	on	tasks	playing	nice.	Instead,	the	operating	system	decides	when	to	pause	one	task	and	switch	to	another.	This
ensures	all	tasks	get	a	fair	share	of	CPU	time,	even	if	some	tasks	don’t	want	to	give	up	control.Where	Is	It	Used?Modern	operating	systems	(Windows,	macOS,	Linux)Web	serversJava	threads	(Thread	class)	and	Python’s	threading	moduleExampleA	web	server	needs	to	handle	multiple	client	requests	at	the	same	time.	Here’s	an	example	using	Python’s
threading	module:import	threading	import	time	def	handle_request(client_id):				print(f"Handling	request	from	Client	{client_id}")				time.sleep(2)				print(f"Finished	handling	Client	{client_id}")	threads	=	[]	for	i	in	range(5):				thread	=	threading.Thread(target=handle_request,	args=(i,))				thread.start()				threads.append(thread)	for	thread	in	threads:
			thread.join()Here,	multiple	client	requests	are	handled	concurrently,	ensuring	no	single	request	blocks	the	entire	server.3.	Event-Driven	ConcurrencyImagine	a	restaurant	kitchen	where	the	chef	only	works	when	there’s	an	order.	Instead	of	constantly	checking	if	food	is	ready,	the	chef	responds	to	new	tasks	as	they	arrive.	That’s	event-driven
concurrency.	Tasks	are	triggered	by	events	rather	than	running	continuously.Where	Is	It	Used?JavaScript	(Node.js	event	loop)Python’s	asyncioReal-time	chat	applicationsExampleHere’s	a	simple	event-driven	web	server	(Node.js):const	http	=	require('http');	const	server	=	http.createServer((req,	res)	=>	{				res.writeHead(200,	{'Content-Type':
'text/plain'});				res.end('Hello,	world!');	});	server.listen(3000,	()	=>	{				console.log('Server	running	at);	});Node.js	uses	an	event	loop	to	handle	multiple	requests	efficiently	without	blocking	execution.4.	Reactive	ProgrammingWhat	if	you	could	create	a	stream	of	data	and	react	to	changes	automatically?	That’s	the	core	idea	of	reactive	programming.
Instead	of	manually	checking	for	updates,	you	define	how	the	system	should	respond	to	changes	dynamically.Where	Is	It	Used?RxJava	(for	Java	applications)Reactor	(for	Spring	WebFlux)ReactiveX	(used	across	multiple	languages)Real-time	data	pipelines	and	dashboardsExampleHere’s	a	simple	example	of	reactive	programming	in	Python	with
RxPY:from	rx	import	from_iterable	from	rx.operators	import	map,	filter	data_stream	=	from_iterable(range(10))	processed_stream	=	data_stream.pipe(filter(lambda	x:	x	%	2	==	0),		#	Keep	even	numbers				map(lambda	x:	x	*	10)		#	Multiply	by	10)	processed_stream.subscribe(lambda	x:	print(f"Received:	{x}"))This	program	processes	a	stream	of
numbers	reactively,	meaning	each	number	is	handled	as	soon	as	it	arrives	rather	than	waiting	for	all	numbers	to	be	processed	first.How	Models	CompareModelStrengthsWeaknessesBest	ForCooperativeSimple,	low	overheadVulnerable	to	task	greedEmbedded	systems,	async	I/OPreemptiveFair	resource	sharingSynchronization	complexityMulti-core
CPU	workloadsEvent-DrivenHigh	I/O	scalabilitySingle	point	of	failureWeb	servers,	real-time	appsReactiveClean	data	flow	managementSteep	learning	curveReal-time	UIs,	data	streamsUse	Cases	of	ConcurrencyConcurrency	is	the	backbone	of	how	modern	apps	stay	responsive	and	efficient.	It	shines	in	situations	where	your	program	needs	to	handle
multiple	tasks	that	spend	a	lot	of	time	waiting,	whether	for	user	input,	network	responses,	or	disk	operations.Let’s	explore	how	it	powers	everyday	tools	and	systems.1.	Web	BrowsersA	browser	juggles	multiple	tasks	at	once,	like:Rendering	pages	while	fetching	images/scripts.Handling	user	interactions	(scrolling,	typing,	clicking).Background	updates
(e.g.,	auto-refreshing	tabs).2.	Web	ServersThink	about	a	busy	website,	like	an	online	store	during	a	holiday	sale.	Thousands	of	users	are	requesting	pages,	adding	items	to	carts,	and	checking	out—all	at	the	same	time.Web	servers	like	Apache/Nginx	use	threads	or	async	I/O	to	process	requests	without	blocking.Rate	limits	prevent	overload	(e.g.,
browsers	cap	concurrent	connections	to	avoid	DoS	attacks).3.	Chat	AppsSlack,	WhatsApp,	or	Discord	rely	on	concurrency	to	keep	conversations	flowing:Processing	messages	while	updating	the	UI.Sending/receiving	data	without	delays.4.	Video	GamesVideo	games	are	a	perfect	example	of	concurrency	in	action.	While	you’re	playing,	multiple	things
happen	at	the	same	time:Graphics	render	continuously	(so	you	see	the	game	world).User	input	is	processed	(e.g.,	moving	a	character,	firing	a	weapon).Physics	simulations	run	(so	objects	interact	realistically).Background	music	&	sound	effects	play	seamlessly.What	Is	Parallelism?Parallelism	means	actually	executing	multiple	tasks	simultaneously	by
using	multiple	processing	units—typically	different	CPU	cores	or	processors.	Nothing	is	being	faked	or	switched	between;	real	work	is	happening	in	parallel.The	key	difference	from	concurrency?	Parallelism	requires	multiple	physical	processors	or	cores	to	truly	run	things	simultaneously.	It's	about	having	enough	hands	on	deck	to	do	multiple	things
at	once.Think	about	that	data	processing	example:When	you	need	to	analyze	data,	generate	reports,	and	run	simulations,	parallelism	lets	you	assign	each	task	to	a	different	processor.	Core	1	crunches	the	analysis,	Core	2	generates	the	reports,	and	Core	3	handles	the	simulations—all	happening	genuinely	at	the	same	time.Parallelism	shines	when	you
can	break	a	problem	into	completely	independent	pieces.	The	less	these	pieces	need	to	talk	to	each	other,	the	better	parallelism	works.Here's	a	simple	example	using	Python's	multiprocessing	module:import	multiprocessing	import	time	def	analyze_data(dataset_id):				print(f"Analyzing	dataset	{dataset_id}...")				time.sleep(3)		#	Simulates	complex
analysis				print(f"Analysis	of	dataset	{dataset_id}	complete!")				return	f"Results	from	dataset	{dataset_id}"	def	generate_report(report_type):				print(f"Generating	{report_type}	report...")				time.sleep(2)		#	Simulates	report	generation				print(f"{report_type}	report	complete!")				return	f"{report_type}	report	data"	def
run_simulation(simulation_params):				print(f"Running	simulation	with	parameters	{simulation_params}...")				time.sleep(4)		#	Simulates	complex	simulation				print(f"Simulation	{simulation_params}	complete!")				return	f"Simulation	results:	{simulation_params}"	if	__name__	==	"__main__":				#	Create	a	pool	of	processes				with
multiprocessing.Pool(processes=3)	as	pool:								#	Start	all	tasks	in	parallel								analysis_result	=	pool.apply_async(analyze_data,	("customer_behavior",))								report_result	=	pool.apply_async(generate_report,	("quarterly",))								simulation_result	=	pool.apply_async(run_simulation,	("market_growth",))															#	Get	the	results	(this	will	wait	until
tasks	complete)								analysis_data	=	analysis_result.get()								report_data	=	report_result.get()								simulation_data	=	simulation_result.get()							print("All	tasks	completed!")				print(f"Final	results:	{analysis_data},	{report_data},	{simulation_data}")How	it	worksEach	task	runs	in	a	separate	process	using	different	CPU	cores.All	tasks	run
simultaneously,	reducing	the	total	execution	time.Unlike	concurrency	(which	switches	between	tasks),	these	tasks	actually	execute	in	parallel.This	method	is	ideal	for	CPU-bound	tasks	where	heavy	computation	is	required.Different	Parallelism	ModelsParallelism	is	all	about	doing	multiple	things	at	the	same	time.	Unlike	concurrency,	which	is	about
managing	multiple	tasks	efficiently,	parallelism	actually	runs	tasks	simultaneously,	utilizing	multi-core	processors	or	distributed	computing	resources.	Let's	explore	some	key	parallelism	models	and	how	they	are	used	in	code	and	hardware.1.	Data	ParallelismEver	wondered	how	large-scale	computations,	like	image	processing	or	deep	learning,
happen	so	fast?	That’s	data	parallelism	at	work.	This	model	splits	large	datasets	into	smaller	chunks	and	processes	them	simultaneously	across	multiple	processors.	Each	processor	performs	the	same	operation	on	its	respective	subset	of	data.When	Is	It	Used?SIMD	(Single	Instruction,	Multiple	Data)	operationsParallel	array	processingMapReduce
frameworkReal-World	ApplicationsImage	and	signal	processingLarge-scale	data	analysis	(Big	Data)Scientific	simulations2.	Task	ParallelismTask	parallelism	takes	a	different	approach.	Instead	of	dividing	data,	it	breaks	the	overall	job	into	smaller,	independent	tasks	that	run	in	parallel.	Each	task	performs	a	different	operation,	allowing	multiple
processes	to	work	simultaneously	without	interfering	with	each	other.When	Is	It	Used?Thread-based	parallelism	in	JavaParallel	Tasks	in	.NETPOSIX	threadsReal-World	ApplicationsA	web	server	handling	API	requests,	database	writes,	and	logging	at	once.Rendering	a	game’s	physics,	audio,	and	UI	in	separate	threads.Example	Here	is	an	example	of
parallel	implementation	of	an	algorithm	in	Python	with	multiprocessing:import	multiprocessing	def	compute_square(num):				return	num	*	num	if	__name__	==	"__main__":				numbers	=	[1,	2,	3,	4,	5]				with	multiprocessing.Pool(processes=4)	as	pool:								results	=	pool.map(compute_square,	numbers)				print(results)		#	Output:	[1,	4,	9,	16,	25]This
example	divides	the	task	of	squaring	numbers	across	multiple	CPU	cores,	speeding	up	execution.3.	Pipeline	ParallelismImagine	a	car	assembly	line:	each	stage	completes	a	specific	task	before	passing	it	on.	Pipeline	parallelism	works	the	same	way.	Tasks	are	divided	into	stages,	and	each	stage	processes	a	portion	of	the	workload	concurrently,
improving	efficiency.When	It	Is	Used?Unix	pipeline	commands	(cat	file.txt	|	grep	'error'	|	sort)Image	processing	pipelinesETL	(Extract,	Transform,	Load)	pipelines	in	data	engineeringReal-World	ApplicationsVideo	and	audio	processingReal-time	data	streaming	applicationsManufacturing	and	assembly	line	automation4.	GPU	ParallelismGPUs	aren’t	just
for	gaming!	They’re	built	for	massive	parallelism,	capable	of	executing	thousands	of	threads	simultaneously.	This	makes	them	ideal	for	tasks	requiring	heavy	computations,	like	AI	and	deep	learning.When	It	Is	Used?CUDA	(Compute	Unified	Device	Architecture)	by	NVIDIAOpenCL	(Open	Computing	Language)TensorFlow	and	PyTorch	for	deep
learningReal-World	ApplicationsMachine	learning	and	deep	learningReal-time	graphics	renderingHigh-performance	scientific	computingExampleThe	following	is	a	code	snippet	that	illustrates	GPU	parallelism	in	Deep	Learning	(using	TensorFlow	&	GPU	acceleration):import	tensorflow	as	tf	#	Check	if	GPU	is	available	print("GPU	Available:",
tf.config.list_physical_devices('GPU'))	#	Sample	Neural	Network	using	GPU	Acceleration	model	=	tf.keras.models.Sequential([tf.keras.layers.Dense(128,	activation='relu'),				tf.keras.layers.Dense(64,	activation='relu'),				tf.keras.layers.Dense(10,	activation='softmax')])	model.compile(optimizer='adam',	loss='sparse_categorical_crossentropy',
metrics=['accuracy'])	print("Model	ready	for	GPU	training!")This	snippet	ensures	TensorFlow	uses	the	available	GPU	to	accelerate	deep	learning	model	training.When	to	Use	Which	ModelModelStrengthsWeaknessesBest	ForData	ParallelismSimple	for	uniform	tasksNeeds	identical	operationsML	training,	image	processingTask	ParallelismFlexible	for
diverse	tasksCoordination	complexityWeb	servers,	real-time	appsPipelineEfficient	for	streaming	dataBottlenecks	stall	flowVideo	encoding,	ETLGPU	ParallelismRaw	speed	for	math-heavy	workLimited	by	GPU	memoryDeep	learning,	simulationsUse	Cases	of	ParallelismParallelism	is	what	makes	modern	computing	insanely	fast.	From	AI	training	to
large-scale	simulations,	parallel	processing	is	everywhere.	Here	are	some	real-world	examples:1.	Machine	Learning	TrainingWithout	parallelism,	training	deep	learning	models	would	take	months	or	even	years.	Data	parallelism	splits	datasets	into	batches	and	trains	them	across	GPUs.TensorFlow’s	data	parallelism	lets	researchers	train	models	on
distributed	clusters.Real-world	example:	NVIDIA’s	M4	chip	processes	38	trillion	operations/second	for	AI	tasks	like	image	recognition.2.	Video	RenderingHave	you	ever	wondered	why	professional	animation	studios	have	rooms	full	of	powerful	computers?	It's	all	about	parallel	rendering:Each	frame	in	an	animated	movie	can	require	hours	of
computation.By	rendering	different	frames	on	different	machines	simultaneously,	studios	can	produce	complex	animations	in	reasonable	timeframes.A	scene	that	might	take	weeks	to	render	on	a	single	computer	can	be	completed	overnight	when	distributed	across	hundreds	of	machines.Real-world	example:	Apple’s	M4	chip	renders	3D	graphics	in
iPad	Pro	games	by	distributing	tasks	across	its	10-core	GPU.3.	Web	CrawlersSearch	engines	need	to	constantly	index	billions	of	web	pages.	Parallelism	makes	this	enormous	task	manageable:Search	engine	crawlers	like	Googlebot	split	up	the	internet	into	manageable	chunks.Different	crawler	instances	process	different	websites	simultaneously.Real-
world	example:	Aptos	Labs’	Block-STM	validates	160,000+	blockchain	transactions/second	by	parallelizing	smart	contract	execution.4.	Data	ProcessingWhen	companies	analyze	massive	datasets	to	derive	business	insights,	parallelism	is	essential:Frameworks	like	Apache	Spark	distribute	data	processing	across	clusters.Analyzing	logs	from	millions	of
users	becomes	feasible.Real-time	analytics	for	fraud	detection	or	ad	targeting.Real-world	example:	IBM’s	Summit	supercomputer	processes	mental	health	data	to	predict	at-risk	children,	leveraging	parallelism	for	faster	insights.5.	Scientific	SimulationsSome	of	the	most	impressive	applications	of	parallelism	occur	in	scientific	computing:Weather
forecasting	models	divide	the	atmosphere	into	a	3D	grid,	with	different	regions	calculated	on	different	processors.Pharmaceutical	companies	simulate	molecular	interactions	in	parallel	to	discover	potential	new	drugs.Physics	researchers	model	particle	collisions	by	distributing	calculations	across	supercomputer	clusters.Real-world	example:	The
University	of	Chicago’s	pSIMS	project	models	climate	impacts	using	parallel	supercomputers.Learn	More:	15	Best	AI	Tools	for	Developers	To	Improve	WorkflowConcurrency	vs.	ParallelismNow	that	we've	explored	both	concepts	in	depth,	let's	compare	concurrency	and	parallelism	to	better	understand	when	and	how	to	use	each	approach.Resource
UtilizationConcurrency:	Runs	multiple	tasks	within	a	single	core	by	rapidly	switching	between	them.	When	Task	A	is	waiting	for	a	database	query,	the	CPU	jumps	to	Task	B	instead	of	sitting	idle.Parallelism:	Uses	multiple	cores	or	processors	to	execute	tasks	at	the	same	time.	Imagine	multiple	cashiers	at	different	registers,	each	serving	a	customer
simultaneously.FocusConcurrency:	Focuses	on	structure—it's	about	how	we	organize	and	manage	multiple	tasks	to	progress	simultaneously.Parallelism:	Focuses	on	execution—it's	about	physically	performing	multiple	computations	at	the	exact	same	time.Task	ExecutionConcurrency:	Creates	an	illusion	of	simultaneity	through	rapid	task	switching.
Tasks	are	actually	taking	turns	using	the	CPU,	but	the	switching	happens	so	quickly	that	it	appears	simultaneous	to	users.Parallelism:	Offers	true	simultaneity—different	tasks	actually	execute	at	the	same	instant	in	time	on	different	processors.Context	SwitchingConcurrency:	Involves	frequent	context	switching,	where	the	CPU	rapidly	jumps	between
tasks.	While	this	helps	keep	things	moving,	excessive	switching	can	slow	things	down.Parallelism:	Avoids	this	overhead	since	each	task	runs	uninterrupted	on	its	own	processor.	The	trade-off	is	that	you	need	multiple	physical	processing	units,	which	increases	hardware	costs.When	to	Use	What?Concurrency	is	great	for	I/O-bound	tasks:Handling
multiple	network	requestsReading	and	writing	filesManaging	user	input	in	interactive	applicationsParallelism	is	best	for	CPU-bound	tasks:Complex	mathematical	computationsImage	and	video	processingMachine	learning	and	data	analysisConcurrency	vs.	Parallelism:	Table	ComparisonAspectConcurrencyParallelismDefinitionIt's	all	about	juggling
multiple	tasks,	interleaving	their	execution.	Think	of	it	as	rapidly	switching	between	tasks,	so	they	seem	to	run	at	the	same	time.It's	about	simultaneous	execution	of	multiple	tasks.	They	are	actually	running	at	the	same	time	on	separate	resources.ExecutionAchieved	with	context	switching	on	a	single	core	or	thread.Needs	multiple	cores	or	processors
to	execute	tasks	simultaneously.FocusManaging	multiple	tasks	and	making	the	most	of	available	resources.Splitting	one	big	task	into	smaller	sub-tasks	that	can	be	executed	at	the	same	time.Use	CaseGreat	for	I/O-bound	tasks.	Think	handling	tons	of	network	requests	or	file	operations.Perfect	for	CPU-bound	tasks.	Like	heavy-duty	data	processing	or
training	a	machine	learning	model.Resource	NeedsCan	run	on	a	single	core	or	thread.Needs	multiple	cores	or	threads	to	make	it	happen.What	You	GetImproves	responsiveness.	Tasks	are	managed	smoothly,	making	things	feel	faster.Reduces	overall	execution	time	by	doing	tasks	at	the	same	time.ExamplesAsynchronous	APIs,	chat	apps,	web	servers
handling	lots	of	requests.Video	rendering,	machine	learning	training,	scientific	simulations.How	Can	Concurrency	and	Parallelism	Work	TogetherMany	modern	applications	use	both	approaches	together:Web	servers	use	concurrency	to	manage	thousands	of	connections	while	using	parallelism	to	process	requests	across	multiple	coresGame
engines	use	concurrency	to	handle	input,	networking,	and	audio	while	using	parallelism	to	maximize	physics	and	rendering	performanceDatabase	systems	use	concurrency	to	handle	multiple	client	connections	while	using	parallelism	to	execute	queries	fasterSo,	how	can	this	all	play	out	in	real-world	scenarios?	Let’s	explore	a	few	examples.Financial
Data	Processing:Scenario:	A	stock	trading	app	needs	real-time	data	and	complex	analysis.Concurrency:	Fetch	stock	prices	from	APIs	without	blocking.Parallelism:	Run	Monte	Carlo	simulations	across	cores	to	predict	risks.Result:	Traders	get	instant	updates	and	deep	insights.Video	Processing:Scenario:	A	TikTok-like	app	handles	uploads	and
encoding.Concurrency:	Let	users	upload	videos	while	others	are	processed.Parallelism:	Encode	videos	in	parallel	using	GPU	cores.Result:	No	lag,	no	crashes—just	smooth	uploads	and	fast	playback.Data	Scraping:Scenario:	A	marketing	tool	scrapes	websites	and	analyzes	trends.Concurrency:	Fetch	100	websites	at	once	(async	I/O).Parallelism:	Parse
data	across	cores	to	spot	trends.Result:	Faster	insights,	broader	coverage.Explore	More:	Automate	Your	Daily	Workflow	with	These	19	Useful	Python	ScriptsConclusionSo	there	you	have	it!	Concurrency	and	parallelism	might	sound	similar,	but	they	solve	different	problems	in	different	ways.Remember:	concurrency	is	about	juggling	multiple	tasks	and
making	progress	on	all	of	them,	even	with	limited	resources.	Parallelism	is	about	throwing	more	resources	at	your	problem	to	get	things	done	faster.Your	applications	probably	need	both	approaches.	When	your	code	is	waiting	for	things	(like	user	input	or	network	responses),	concurrency	keeps	things	moving.	When	your	code	needs	raw	processing
power,	parallelism	delivers	the	speed.The	next	time	your	app	feels	sluggish	or	unresponsive,	ask	yourself:	Is	this	a	concurrency	problem	or	a	parallelism	problem?	The	answer	will	point	you	toward	the	right	solution.For	Developers:Ready	to	put	your	concurrency	and	parallelism	skills	to	work?	Join	Index.dev's	talent	network	today	and	get	matched
with	global	companies	looking	for	developers	who	understand	these	crucial	concepts.	Build	a	global	remote	career!For	Clients:	Need	developers	who	truly	understand	concurrency	and	parallelism?	Index.dev	connects	you	with	the	top	5%	of	vetted	developers	in	just	48	hours.	Start	your	30-day	free	trial	today	and	build	your	team	with	experts	who	can
optimize	your	applications	for	maximum	efficiency.	At	first,	it	may	seem	that	concurrency	and	parallelism	may	be	referring	to	the	same	concepts.	However,	these	terms	are	actually	different.This	article	explains	the	differences	between	concurrency	vs	parallelism.	We	also	use	a	practical	example	to	explore	the	concepts	even	more	and	show	how	using
concurrency	and	parallelism	can	help	speed	up	the	web	scraping	process.For	your	convenience,	you	can	also	watch	this	tutorial	on	concurrent	vs	parallel	processing	in	a	video	format	or	keep	reading	a	blog	post.This	capability	of	modern	CPUs	to	pause	and	resume	tasks	so	fast	gives	an	illusion	as	if	more	than	one	task	is	running	in	parallel.	However,
this	is	not	parallel.	This	is	concurrent.Concurrency	can	be	broadly	understood	as	multi-threading.	There	are	usually	many	ways	of	creating	concurrent	applications,	and	threading	is	just	one	of	them.	Sometimes,	other	terms	like	asynchronous	tasks	are	also	used.	The	difference	lies	in	the	implementation	and	details.	However,	from	a	broader	point	of
view,	they	both	mean	a	set	of	instructions	that	can	be	paused	and	resumed.	There	is	a	programming	paradigm	called	Concurrent	Computing.	This	involves	writing	code	so	that	it	seems	like	more	than	one	process	is	being	performed	simultaneously,	while	they	never	actually	execute	at	the	same	time.	This	is	known	as	concurrent	programming.	What	is
a	thread?In	broad	terms,	a	thread	is	the	smallest	set	of	tasks	that	can	be	handled	and	managed	by	the	operating	system	without	any	dependencies	on	each	other.	The	actual	implementation	differs	in	various	operating	systems.	The	way	of	programmatically	creating	threads	also	differs	in	various	programming	languages.Python	provides	a	powerful
threading	module	for	creating	and	managing	threads.	Practical	exampleTo	understand	how	concurrency	works,	let’s	solve	a	practical	problem.	The	issue	is	to	process	over	200	pages	as	fast	as	possible.	Here	are	the	details:Step	1.	Go	to	the	Wikipedia	page	with	a	list	of	countries	by	population	and	get	the	links	of	all	the	233	countries	listed	on	this
page.Step	2.	Go	to	all	these	233	pages	and	save	the	HTML	locally.Let’s	create	a	function	to	get	all	the	links.	At	first,	we	won’t	involve	concurrency	or	parallelism	here.import	requests	from	bs4	import	BeautifulSoup	from	urllib.parse	import	urljoin	def	get_links():	countries_list	=	'	United_Nations)'	all_links	=	[]	response	=	requests.get(countries_list)
soup	=	BeautifulSoup(response.text,	"lxml")	countries_el	=	soup.select('td	.flagicon+	a')	for	link_el	in	countries_el:	link	=	link_el.get("href")	link	=	urljoin(countries_list,	link)	all_links.append(link)	return	all_linksThis	function	gets	the	response	from	the	link	and	uses	BeautifulSoup	to	extract	all	the	links.	Links	that	we	retrieve	are	relative	links.	They
are	converted	to	absolute	links	using	urljoin.	Now	let’s	write	a	function	that	doesn’t	use	any	threading,	but	sequentially	downloads	the	HTML	from	all	those	233	links.First,	let’s	create	a	function	to	fetch	and	save	a	link.def	fetch(link):	response	=	requests.get(link)	with	open(link.split("/")[-1]+".html",	"wb")	as	f:	f.write(response.content)This	function	is
simply	getting	the	response	of	the	parameter	link	and	saving	it	as	an	HTML	file.Finally,	let’s	call	this	function	in	a	loop:import	time	if	__name__	==	'__main__':	links	=	get_links()	print(f"Total	pages:	{len(links)}")	start_time	=	time.time()	#	This	for	loop	will	be	optimized	for	link	in	links:	fetch(link)	duration	=	time.time()	-	start_time	print(f"Downloaded
{len(links)}	links	in	{duration}	seconds")With	our	computer,	this	took	137.37	seconds.	Our	objective	is	to	bring	this	time	down.Using	concurrency	to	speed	up	processesAlthough	we	can	create	threads	manually,	we’ll	have	to	start	them	manually	and	call	the	join	method	on	each	thread	so	that	the	main	program	waits	for	all	these	threads	to
complete.The	better	approach	is	to	use	the	ThreadPoolExecutor	class.	This	class	is	part	of	the	concurrent.futures	module.	The	benefit	of	using	this	class	is	that	it	allows	us	an	easy	interface	for	creating	and	executing	threads.	Let’s	see	how	it	can	be	used.First,	we	need	to	import	ThreadPoolExecutor:from	concurrent.futures	import
ThreadPoolExecutorNow,	the	for	loop	written	above	can	be	changed	to	the	followingwith	ThreadPoolExecutor(max_workers=16)	as	executor:	executor.map(fetch,	links)Here,	the	executor	applies	the	function	fetch	to	every	item	of	links	and	yields	the	results.	The	maximum	number	of	threads	is	controlled	by	max_workers	argument.The	final	result	is
astonishing!	All	these	233	links	were	downloaded	in	11.23	seconds.	It’s	a	better	result	than	the	synchronous	version	which	took	around	138	seconds.It’s	important	to	find	the	sweet	spot	for	the	max_worker.	On	our	computer,	if	the	max_worker	parameter	is	changed	to	32,	the	time	comes	down	to	4.6	seconds.	Increasing	this	number	further	doesn’t
improve	things	much.	This	sweet	spot	will	differ	for	every	processor	for	the	same	code.Note:	the	print()	function	isn’t	thread-safe.	The	reason	is	that	print	works	with	a	reference	to	the	standard	output.	The	standard	output	is	shared	globally.	We’ll	use	print()	with	a	new	line	character	explicitly	and	an	empty	end	parameter.What	is	parallelism?In	the
previous	section,	we	looked	at	a	single	processor.	However,	most	processors	have	more	than	one	core.	In	some	cases,	a	machine	can	have	more	than	one	processor.One	example	is	parallel	computing.	This	is	a	type	of	computation	in	which	multiple	processors	carry	out	many	processes	at	the	same	time.	To	achieve	this	parallel	processing,	specialized
programming	is	needed.	This	is	known	as	parallel	programming,	where	the	code	is	written	to	utilize	multiple	CPU	Cores.	In	this	case,	more	than	one	process	is	actually	executed	in	parallel.	The	following	image	should	help	understand	parallelism	and	how	it	helps	in	executing	multiple	tasks.Let’s	go	back	to	the	previously	mentioned	practical	issue	of
downloading	the	HTML	from	all	those	233	links.In	Python,	parallelism	can	be	achieved		by	using	multitasking.	It	allows	us	for	a	simultaneous	execution	(download	several	links	at	the	same	time)	by	using	several	processors.To	write	an	effective	code	that	can	be	run	on	any	machine,	you	would	need	to	know	the	number	of	processors	available	on	that
machine.	Python	provides	a	very	useful	method,	cpu_count(),	to	get	the	count	of	the	processor	on	a	machine.	This	is	very	helpful	to	find	the	exact	number	of	tasks	that	can	be	processed	in	parallel.	Note	that	in	the	case	of	a	multi-core	CPU,	each	core	works	as	a	different	CPU.Let’s	start	with	importing	the	required	module:from	multiprocessing	import
Pool,	cpu_countNow	we	can	replace	the	for	loop	in	the	synchronous	code	with	this	code:with	Pool(cpu_count())	as	p:	p.map(fetch,	links)This	will	create	a	multiprocessing	pool	that	is	equal	to	the	count	of	the	CPU.	It	means	that	the	limit	of	multiple	tasks	being	carried	out	would	be	determined	when	the	code	is	actually	running.This	fetches	all	233	links
in	18.10	seconds.	It’s	also	noticeably	faster	than	the	synchronous	version	which	took	around	138	seconds.Difference	between	concurrency	and	parallelismHere’s	a	list	of	parallelism	vs	concurrency	differences:Concurrency	is	when	multiple	tasks	can	run	in	overlapping	periods.	It’s	an	illusion	of	multiple	tasks	running	in	parallel	because	of	a	very	fast
switching	by	the	CPU.	Two	tasks	can’t	run	at	the	same	time	in	a	single-core	CPU.	Parallelism	is	when	tasks	actually	run	in	parallel	in	multiple	CPUs.Concurrency	is	about	managing	multiple	different	tasks	at	the	same	time,	while	a	parallel	program	is	running	multiple	instruction	sequences	at	the	same	time.In	Python,	concurrency	is	achieved	by	using
threading,	while	parallelism	is	achieved	by	using	multitasking.Concurrency	needs	only	one	separate	CPU	Core,	while	to	achieve	parallelism	it	needs	more	than	one.		Concurrent	programs	are	about	interruptions,	and	parallelism	is	about	isolation.Combination	of	concurrent	and	parallel	programmingThis	is	often	known	as	Parallel	Concurrent
execution.	The	following	image	can	help	to	understand	the	combination	of	parallelism	and	concurrency.As	it’s	evident,	if	multiple	CPUs	are	running	separate	threads,	the	process	is	parallel	and	concurrent	at	the	same	time.Suitable	solution	for	web	scrapingIt	can	be	assumed	that	both	parallel	and	concurrent	programming	make	the	web	scraping
process	much	faster.	However,	this	should	be	taken	with	a	pinch	of	salt.	Every	project	is	unique,	and	the	complexity	of	every	project	is	different.	Starting	with	concurrency	first	and	then	looking	at	parallelism	would	be	a	great	idea.	Combining	concurrency	and	parallelism	may	help	in	some	cases,	but	it	can	make	code	complex	and	introduce
challenging	trace	bugs.	Once	again,	you	should	choose	the	one	that	suits	your	web	scraping	project	best.In	addition	to	optimizing	your	code,	implementing	proxy	servers	is	another	powerful	way	to	scale	your	web	scraping	efforts	efficiently.	Proxies	help	to	distribute	requests	across	different	IP	addresses,	avoiding	rate	limits	and	IP	bans	that	can
prevent	your	scraper	from	running	smoothly	–	even	when	your	system	is	fully	concurrent	or	parallelized.	Residential,	rotating,	or	datacenter	proxies	can	each	play	a	role	depending	on	your	target	website	and	business	needs.	Additionally,	if	you’re	looking	to	test	proxies	before	committing	to	a	full	subscription,	you	can	always	take	advantage	of	high-
quality	free	proxies	coming	from	a	reputable	provider.You	can	always	forget	about	complex	web	scraping	processes	and	choose	an	advanced	public	data	collection	solution	–	Web	Scraper	API.	Try	it	for	free	to	decide	if	it's	a	suitable	option	for	your	case.	ConclusionIn	this	article,	we	explored	concurrency	vs	parallelism	and	described	what	is	the
difference	between	concurrency	and	parallelism.	Concurrency	can	be	easily	understood	as	multiple	threads	or	units	of	work	that	can	be	paused	and	resumed.	Parallelism	is	simply	multiple	tasks	running	on	multiple	cores.	Concurrency	and	parallelism	can	be	achieved	using	Python	threading	and	multitasking	libraries,	respectively.	Using	either
concurrent	vs	parallel	execution	will	improve	the	performance	of	the	web	scraping	process	significantly.See	more	comparison	articles,	such	as	Go	vs	Python,	by	exploring	our	blog.		I	believe	this	answer	to	be	more	correct	than	the	existing	answers	and	editing	them	would	have	changed	their	essence.	I	have	tried	to	link	to	various	sources	or	wikipedia
pages	so	others	can	affirm	correctness.	Concurrency:	the	property	of	a	system	which	enables	units	of	the	program,	algorithm,	or	problem	to	be	executed	out-of-order	or	in	partial	order	without	affecting	the	final	outcome	1	2.	A	simple	example	of	this	is	consecutive	additions:	0	+	1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	=	45	Due	to	the	commutative
property	of	addition	the	order	of	these	can	be	re-arranged	without	affecting	correctness;	the	following	arrangement	will	result	in	the	same	answer:	(1	+	9)	+	(2	+	8)	+	(3	+	7)	+	(4	+	6)	+	5	+	0	=	45	Here	I	have	grouped	numbers	into	pairs	that	will	sum	to	10,	making	it	easier	for	me	to	arrive	at	the	correct	answer	in	my	head.	Parallel	Computing:	a
type	of	computation	in	which	many	calculations	or	the	execution	of	processes	are	carried	out	simultaneously	3	4.	Thus	parallel	computing	leverages	the	property	of	concurrency	to	execute	multiple	units	of	the	program,	algorithm,	or	problem	simultaneously.	Continuing	with	the	example	of	consecutive	additions,	we	can	execute	different	portions	of	the
sum	in	parallel:	Execution	unit	1:	0	+	1	+	2	+	3	+	4	=	10	Execution	unit	2:	5	+	6	+	7	+	8	+	9	=	35	Then	at	the	end	we	sum	the	results	from	each	worker	to	get	10	+	35	=	45.	Again,	this	parallelism	was	only	possible	because	consecutive	additions	have	the	property	of	concurrency.	Concurrency	can	be	leveraged	by	more	than	just	parallelism	though.
Consider	pre-emption	on	a	single-core	system:	over	a	period	of	time	the	system	may	make	progress	on	multiple	running	processes	without	any	of	them	finishing.	Indeed,	your	example	of	asyncronous	I/O	is	a	common	example	of	concurrency	that	does	not	require	parallelism.	Confusion	The	above	is	relatively	straightforward.	I	suspect	people	get
confused	because	the	dictionary	definitions	do	not	necessarily	match	what	was	outlined	above:	Concurrent:	occurring	or	existing	simultaneously	or	side	by	side	5.	Concurrency:	the	fact	of	two	or	more	events	or	circumstances	happening	or	existing	at	the	same	time	From	searching	on	google:	"define:	concurrency".	The	dictionary	defines	"concurrency"
as	a	fact	of	occurrence,	whereas	the	definition	in	the	computing	vernacular	is	a	latent	property	of	a	program,	property,	or	system.	Though	related	these	things	are	not	the	same.	Personal	Recommendations	I	recommend	using	the	term	"parallel"	when	the	simultaneous	execution	is	assured	or	expected,	and	to	use	the	term	"concurrent"	when	it	is
uncertain	or	irrelevant	if	simultaneous	execution	will	be	employed.	I	would	therefore	describe	simulating	a	jet	engine	on	multiple	cores	as	parallel.	I	would	describe	Makefiles	as	an	example	of	concurrency.	Makefiles	state	the	dependencies	of	each	target.	When	targets	depend	on	other	targets	this	creates	a	partial	ordering.	When	the	relationships
and	recipes	are	comprehensively	and	correctly	defined	this	establishes	the	property	of	concurrency:	there	exists	a	partial	order	such	that	order	of	certain	tasks	can	be	re-arranged	without	affecting	the	result.	Again,	this	concurrency	can	be	leveraged	to	build	multiple	rules	simultaneously	but	the	concurrency	is	a	property	of	the	Makefile	whether
parallelism	is	employed	or	not.

