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By	the	end	of	this	section,	you	will	be	able	to:	Derive	the	equation	for	rotational	work.	Calculate	rotational	kinetic	energy.	Demonstrate	the	Law	of	Conservation	of	Energy.	In	this	module,	we	will	learn	about	work	and	energy	associated	with	rotational	motion.	Figure	1	shows	a	worker	using	an	electric	grindstone	propelled	by	a	motor.	Sparks	are
flying,	and	noise	and	vibration	are	created	as	layers	of	steel	are	pared	from	the	pole.	The	stone	continues	to	turn	even	after	the	motor	is	turned	off,	but	it	is	eventually	brought	to	a	stop	by	friction.	Clearly,	the	motor	had	to	work	to	get	the	stone	spinning.	This	work	went	into	heat,	light,	sound,	vibration,	and	considerable	rotational	kinetic	energy.
Figure	1.	The	motor	works	in	spinning	the	grindstone,	giving	it	rotational	kinetic	energy.	That	energy	is	then	converted	to	heat,	light,	sound,	and	vibration.	(credit:	U.S.	Navy	photo	by	Mass	Communication	Specialist	Seaman	Zachary	David	Bell)	Work	must	be	done	to	rotate	objects	such	as	grindstones	or	merry-go-rounds.	Work	was	defined	in	Uniform
Circular	Motion	and	Gravitation	for	translational	motion,	and	we	can	build	on	that	knowledge	when	considering	work	done	in	rotational	motion.	The	simplest	rotational	situation	is	one	in	which	the	net	force	is	exerted	perpendicular	to	the	radius	of	a	disk	(as	shown	in	Figure	2)	and	remains	perpendicular	as	the	disk	starts	to	rotate.	The	force	is	parallel
to	the	displacement,	and	so	the	net	work	done	is	the	product	of	the	force	times	the	arc	length	traveled:	[latex]\text{net	}W=	(\text{net	}F)\Delta{s}[/latex].	To	get	torque	and	other	rotational	quantities	into	the	equation,	we	multiply	and	divide	the	right-hand	side	of	the	equation	by	r,	and	gather	terms:	[latex]\text{net}W=\left(r\text{	net
}F\right)\frac{\Delta	s}{r}[/latex].	We	recognize	that	r	net	F	=	net	F	τ		and	Δs/r	=	θ,	so	that	[latex]\text{net	}W=(\text{net	}\tau)\theta[/latex].	This	equation	is	the	expression	for	rotational	work.	It	is	very	similar	to	the	familiar	definition	of	translational	work	as	force	multiplied	by	distance.	Here,	torque	is	analogous	to	force,	and	angle	is	analogous	to
distance.	The	equation	net	W	=	(net	τ)θ	is	valid	in	general,	even	though	it	was	derived	for	a	special	case.	To	get	an	expression	for	rotational	kinetic	energy,	we	must	again	perform	some	algebraic	manipulations.	The	first	step	is	to	note	that	net	τ	=	Iα,	so	that	net	W	=	Iαθ	Figure	2.	The	net	force	on	the	disk	is	kept	perpendicular	to	its	radius	as	the	force
causes	the	disk	to	rotate.	The	net	work	done	is	thus	(net	F)Δs.	The	net	work	goes	into	rotational	kinetic	energy.	Now,	we	solve	one	of	the	rotational	kinematics	equations	for	αθ.	We	start	with	the	equation	ω2	=	ωo2	+	2αθ.	Next,	we	solve	for	αθ:	[latex]\alpha\theta=\frac{{\omega}^{2}-{{\omega}_{\text{0}}}^{2}}{2}[/latex].	Substituting	this	into
the	equation	for	net	W	and	gathering	terms	yields	[latex]\text{net	}W=\frac{1}{2}I\omega^{2}-\frac{1}{2}{I\omega_{\text{0}}}^{2}[/latex].	This	equation	is	the	work-energy	theorem	for	rotational	motion	only.	As	you	may	recall,	net	work	changes	the	kinetic	energy	of	a	system.	Through	an	analogy	with	translational	motion,	we	define	the	term
[latex]\left(\frac{1}{2}\right){\mathrm{I\omega	}}^{2}[/latex]	to	be	rotational	kinetic	energy	KErot	for	an	object	with	a	moment	of	inertia	I	and	an	angular	velocity	ω:	[latex]{\text{KE}}_{\text{rot}}=\frac{1}{2}{{I\omega	}}^{2}[/latex].	The	expression	for	rotational	kinetic	energy	is	exactly	analogous	to	translational	kinetic	energy,	with	I	being
analogous	to	m	and	ω	to	v.	Rotational	kinetic	energy	has	important	effects.	Flywheels,	for	example,	can	be	used	to	store	large	amounts	of	rotational	kinetic	energy	in	a	vehicle,	as	seen	in	Figure	3.	Figure	3.	Experimental	vehicles,	such	as	this	bus	in	Figure	10.16,	have	been	constructed	in	which	rotational	kinetic	energy	is	stored	in	a	large	flywheel.
When	the	bus	goes	down	a	hill,	its	transmission	converts	its	gravitational	potential	energy	into	KErot.	It	can	also	convert	translational	kinetic	energy,	when	the	bus	stops,	into	KErot.	The	flywheel’s	energy	can	then	be	used	to	accelerate,	to	go	up	another	hill,	or	to	keep	the	bus	from	going	against	friction.	Consider	a	person	who	spins	a	large	grindstone
by	placing	her	hand	on	its	edge	and	exerting	a	force	through	part	of	a	revolution	as	shown	in	Figure	4.	In	this	example,	we	verify	that	the	work	done	by	the	torque	she	exerts	equals	the	change	in	rotational	energy.	(a)	How	much	work	is	done	if	she	exerts	a	force	of	200	N	through	a	rotation	of	1.00	rad	(57.3º)?	The	force	is	kept	perpendicular	to	the
grindstone’s	0.320-m	radius	at	the	point	of	application,	and	the	effects	of	friction	are	negligible.	(b)	What	is	the	final	angular	velocity	if	the	grindstone	has	a	mass	of	85.0	kg?	(c)	What	is	the	final	rotational	kinetic	energy?	(It	should	equal	the	work.)	Strategy	To	find	the	work,	we	can	use	the	equation	net	W	=	(net	τ)θ.	We	have	enough	information	to
calculate	the	torque	and	are	given	the	rotation	angle.	In	the	second	part,	we	can	find	the	final	angular	velocity	using	one	of	the	kinematic	relationships.	In	the	last	part,	we	can	calculate	the	rotational	kinetic	energy	from	its	expression	in	[latex]{\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega	}}^{2}[/latex].	Solution	for	(a)	The	net	work	is
expressed	in	the	equation	[latex]\text{net	}W=(\text{net	}\tau)\theta[/latex].	where	net	τ	is	the	applied	force	multiplied	by	the	radius	(rF)	because	there	is	no	retarding	friction,	and	the	force	is	perpendicular	to	r.	The	angle	θ	is	given.	Substituting	the	given	values	in	the	equation	above	yields	[latex]\begin{array}{lll}\text{net	}W&	=&	rF\theta
=\left(\text{0.320	m}\right)\left(\text{200	N}\right)\left(\text{1.00	rad}\right)\\	&	=&	\text{64.0	N}\cdot	text{m.}\end{array}[/latex]	Noting	that	1	N·m	=	1	J,	net	W	=	64.0	J	Figure	4.	A	large	grindstone	is	given	a	spin	by	a	person	grasping	its	outer	edge.	Solution	for	(b)	To	find	ω	from	the	given	information	requires	more	than	one	step.	We	start	with
the	kinematic	relationship	in	the	equation	Note	that	ω0	=	0	because	we	start	from	rest.	Taking	the	square	root	of	the	resulting	equation	gives	ω2	=	ω02+2αθ.	[latex]\omega	=(2\alpha\theta)^{1/2}[/latex]	Now	we	need	to	find	α.	One	possibility	is	[latex]\alpha	=\frac{\text{net	}\tau}{I}[/latex],	where	the	torque	is	net	τ	=	rF	=	(0.320	m)(200	N)	=	64.0
N	⋅	m.	The	formula	for	the	moment	of	inertia	for	a	disk	is	found	in	Figure	5:	Figure	5.	Some	rotational	inertias.	[latex]I=\frac{1}{2}{\text{MR}}^{2}=0.5\left(\text{85.0	kg}\right){\left(\text{0.320	m}\right)}^{2}=\text{4.352	kg}\cdot	{\text{m}}^{2}[/latex].	Substituting	the	values	of	torque	and	moment	of	inertia	into	the	expression	for	α,	we
obtain	[latex]\alpha	=\frac{\text{64}\text{.}\text{0	N}\cdot	\text{m}}{\text{4.352	kg}\cdot	{\text{m}}^{2}}=\text{14.7}\frac{\text{rad}}{{\text{s}}^{2}}[/latex].	Now,	substitute	this	value	and	the	given	value	for	θ	into	the	above	expression	for	ω:	[latex]\omega	=	(2\alpha\theta)^{1/2}={\left[2\left(\text{14.7}\frac{\text{rad}}
{{\text{s}}^{2}}\right)\left(\text{1.00	rad}\right)\right]}^{1/2}=\text{5.42}\frac{\text{rad}}{\text{s}}[/latex].	Solution	for	(c)	The	final	rotational	kinetic	energy	is	[latex]{\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega	}}^{2}[/latex].	Both	I	and	ω	were	found	above.	Thus,	KE	rot	=	(0.5)	(4.352	kg⋅m2)(5.42	rad/s)2	=	64.0	J.	The	final
rotational	kinetic	energy	equals	the	work	done	by	the	torque,	which	confirms	that	the	work	done	went	into	rotational	kinetic	energy.	We	could,	in	fact,	have	used	an	expression	for	energy	instead	of	a	kinematic	relation	to	solve	part	(b).	We	will	do	this	in	later	examples.	Helicopter	pilots	are	quite	familiar	with	rotational	kinetic	energy.	They	know,	for
example,	that	a	point	of	no	return	will	be	reached	if	they	allow	their	blades	to	slow	below	a	critical	angular	velocity	during	flight.	The	blades	lose	lift,	and	it	is	impossible	to	immediately	get	the	blades	spinning	fast	enough	to	regain	it.	Rotational	kinetic	energy	must	be	supplied	to	the	blades	to	get	them	to	rotate	faster,	and	enough	energy	cannot	be
supplied	in	time	to	avoid	a	crash.	Because	of	weight	limitations,	helicopter	engines	are	too	small	to	supply	both	the	energy	needed	for	lift	and	to	replenish	the	rotational	kinetic	energy	of	the	blades	once	they	have	slowed	down.	The	rotational	kinetic	energy	is	put	into	them	before	takeoff	and	must	not	be	allowed	to	drop	below	this	crucial	level.	One
possible	way	to	avoid	a	crash	is	to	use	the	gravitational	potential	energy	of	the	helicopter	to	replenish	the	rotational	kinetic	energy	of	the	blades	by	losing	altitude	and	aligning	the	blades	so	that	the	helicopter	is	spun	up	in	the	descent.	Of	course,	if	the	helicopter’s	altitude	is	too	low,	then	there	is	insufficient	time	for	the	blade	to	regain	lift	before
reaching	the	ground.	Determine	that	energy	or	work	is	involved	in	the	rotation.	Determine	the	system	of	interest.	A	sketch	usually	helps.	Analyze	the	situation	to	determine	the	types	of	work	and	energy	involved.	For	closed	systems,	mechanical	energy	is	conserved.	That	is,	KEi	+	PEi	=	KEf	+	PEf.	Note	that	KEi	and	KEf	may	each	include	translational
and	rotational	contributions.	For	open	systems,	mechanical	energy	may	not	be	conserved,	and	other	forms	of	energy	(referred	to	previously	as	OE),	such	as	heat	transfer,	may	enter	or	leave	the	system.	Determine	what	they	are,	and	calculate	them	as	necessary.	Eliminate	terms	wherever	possible	to	simplify	the	algebra.	Check	the	answer	to	see	if	it	is
reasonable.	A	typical	small	rescue	helicopter,	similar	to	the	one	in	Figure	5,	has	four	blades,	each	is	4.00	m	long	and	has	a	mass	of	50.0	kg.	The	blades	can	be	approximated	as	thin	rods	that	rotate	about	one	end	of	an	axis	perpendicular	to	their	length.	The	helicopter	has	a	total	loaded	mass	of	1000	kg.	(a)	Calculate	the	rotational	kinetic	energy	in	the
blades	when	they	rotate	at	300	rpm.	(b)	Calculate	the	translational	kinetic	energy	of	the	helicopter	when	it	flies	at	20.0	m/s,	and	compare	it	with	the	rotational	energy	in	the	blades.	(c)	To	what	height	could	the	helicopter	be	raised	if	all	of	the	rotational	kinetic	energy	could	be	used	to	lift	it?	Strategy	Rotational	and	translational	kinetic	energies	can	be
calculated	from	their	definitions.	The	last	part	of	the	problem	relates	to	the	idea	that	energy	can	change	form,	in	this	case	from	rotational	kinetic	energy	to	gravitational	potential	energy.	Solution	for	(a)	The	rotational	kinetic	energy	is	[latex]{\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega	}}^{2}[/latex].	We	must	convert	the	angular
velocity	to	radians	per	second	and	calculate	the	moment	of	inertia	before	we	can	find	KErot.	The	angular	velocity	ω	is	[latex]\omega	=\frac{\text{300	rev}}{\text{1.00	min}}\cdot	\frac{\text{2pi	rad}}{\text{1	rev}}\cdot	\frac{\text{1.00	min}}{\text{60.0	s}}=\text{31.4}\frac{\text{rad}}{\text{s}}[/latex].	The	moment	of	inertia	of	one	blade	will	be
that	of	a	thin	rod	rotated	about	its	end,	found	in	Figure	5.	The	total	I	is	four	times	this	moment	of	inertia,	because	there	are	four	blades.	Thus,	[latex]I=4\frac{{\mathrm{M\ell	}}^{2}}{3}=4\times	\frac{\left(\text{50.0	kg}\right){\left(\text{4.00	m}\right)}^{2}}{3}=\text{1067	kg}\cdot	{\text{m}}^{2}[/latex].	Entering	ω	and	I	into	the	expression
for	rotational	kinetic	energy	gives	[latex]\begin{array}{lll}{\text{KE}}_{\text{rot}}&	=&	0.5\left(\text{1067	kg}\cdot	{\text{m}}^{2}\right){\left(\text{31.4	rad/s}\right)}^{2}\	&	=&	5.26\times	{\text{10}}^{5}\text{J}\end{array}[/latex]	Solution	for	(b)	Translational	kinetic	energy	was	defined	in	Uniform	Circular	Motion	and	Gravitation.
Entering	the	given	values	of	mass	and	velocity,	we	obtain	[latex]{\text{KE}}_{\text{trans}}=\frac{1}{2}{\mathit{mv}}^{2}=\left(0.5\right)\left(\text{1000	kg}\right){\left(\text{20.0	m/s}\right)}^{2}=2\text{.}\text{00}\times	{\text{10}}^{5}\text{J}[/latex].	To	compare	kinetic	energies,	we	take	the	ratio	of	translational	kinetic	energy	to
rotational	kinetic	energy.	This	ratio	is	[latex]\frac{2\text{.}text{00}\times	{\text{10}}^{5}\text{J}}{5\text{.}\text{26}\times	{\text{10}}^{5}\text{J}}=0.380[/latex].	Solution	for	(c)	At	the	maximum	height,	all	rotational	kinetic	energy	will	have	been	converted	to	gravitational	energy.	To	find	this	height,	we	equate	those	two	energies:	KE	rot	=	PE
grav	or	[latex]\frac{1}{2}{\mathrm{I\omega	}}^{2}=\text{mgh}[/latex].	We	now	solve	for	h	and	substitute	known	values	into	the	resulting	equation	[latex]h=\frac{{\frac{1}{2}\mathrm{I\omega	}}^{2}}{\text{mg}}=\frac{5.26\times	{10}^{5}\text{J}}{\left(\text{1000	kg}\right)\left(9.80{\text{m/s}}^{2}\right)}=\text{53.7	m}[/latex].
Discussion	The	ratio	of	translational	energy	to	rotational	kinetic	energy	is	only	0.380.	This	ratio	tells	us	that	most	of	the	kinetic	energy	of	the	helicopter	is	in	its	spinning	blades—something	you	probably	would	not	suspect.	The	53.7	m	height	to	which	the	helicopter	could	be	raised	with	the	rotational	kinetic	energy	is	also	impressive,	again	emphasizing
the	amount	of	rotational	kinetic	energy	in	the	blades.	Figure	6.	The	first	image	shows	how	helicopters	store	large	amounts	of	rotational	kinetic	energy	in	their	blades.	This	energy	must	be	put	into	the	blades	before	takeoff	and	maintained	until	the	end	of	the	flight.	The	engines	do	not	have	enough	power	to	simultaneously	provide	lift	and	put	significant
rotational	energy	into	the	blades.	The	second	image	shows	a	helicopter	from	the	Auckland	Westpac	Rescue	Helicopter	Service.	Over	50,000	lives	have	been	saved	since	its	operations	beginning	in	1973.	Here,	a	water	rescue	operation	is	shown.	(credit:	111	Emergency,	Flickr)	Conservation	of	energy	includes	rotational	motion,	because	rotational
kinetic	energy	is	another	form	of	KE	.	Uniform	Circular	Motion	and	Gravitation	has	a	detailed	treatment	of	conservation	of	energy.	How	Thick	Is	the	Soup?	Or	Why	Don’t	All	Objects	Roll	Downhill	at	the	Same	Rate?	One	of	the	quality	controls	in	a	tomato	soup	factory	consists	of	rolling	filled	cans	down	a	ramp.	If	they	roll	too	fast,	the	soup	is	too	thin.
Why	should	cans	of	identical	size	and	mass	roll	down	an	incline	at	different	rates?	And	why	should	the	thickest	soup	roll	the	slowest?	The	easiest	way	to	answer	these	questions	is	to	consider	energy.	Suppose	each	can	starts	down	the	ramp	from	rest.	Each	can	starting	from	rest	means	each	starts	with	the	same	gravitational	potential	energy	PEgrav,
which	is	converted	entirely	to	KE,	provided	each	rolls	without	slipping.	KE,	however,	can	take	the	form	of	KEtrans	or	KErot,	and	total	KE	is	the	sum	of	the	two.	If	a	can	rolls	down	a	ramp,	it	puts	part	of	its	energy	into	rotation,	leaving	less	for	translation.	Thus,	the	can	goes	slower	than	it	would	if	it	slid	down.	Furthermore,	the	thin	soup	does	not	rotate,
whereas	the	thick	soup	does,	because	it	sticks	to	the	can.	The	thick	soup	thus	puts	more	of	the	can’s	original	gravitational	potential	energy	into	rotation	than	the	thin	soup,	and	the	can	rolls	more	slowly,	as	seen	in	Figure	7.	Figure	7.	Three	cans	of	soup	with	identical	masses	race	down	an	incline.	The	first	can	has	a	low	friction	coating	and	does	not	roll
but	just	slides	down	the	incline.	It	wins	because	it	converts	its	entire	PE	into	translational	KE.	The	second	and	third	cans	both	roll	down	the	incline	without	slipping.	The	second	can	contains	thin	soup	and	comes	in	second	because	part	of	its	initial	PE	goes	into	rotating	the	can	(but	not	the	thin	soup).	The	third	can	contains	thick	soup.	It	comes	in	third
because	the	soup	rotates	along	with	the	can,	taking	even	more	of	the	initial	PE	for	rotational	KE,	leaving	less	for	translational	KE.	Assuming	no	losses	due	to	friction,	there	is	only	one	force	doing	work—gravity.	Therefore	the	total	work	done	is	the	change	in	kinetic	energy.	As	the	cans	start	moving,	the	potential	energy	is	changing	into	kinetic	energy.
Conservation	of	energy	gives	PEi	=	KEf.	More	specifically,	PE	grav	=	KE	trans	+	KE	rot	or	[latex]mgh=\frac{1}{2}{{mv}}^{2}+\frac{1}{2}{{I\omega	}}^{2}[/latex].	So,	the	initial	mgh	is	divided	between	translational	kinetic	energy	and	rotational	kinetic	energy;	and	the	greater	I	is,	the	less	energy	goes	into	translation.	If	the	can	slides	down
without	friction,	then	ω	=	0	and	all	the	energy	goes	into	translation;	thus,	the	can	goes	faster.	Locate	several	cans	each	containing	different	types	of	food.	First,	predict	which	can	will	win	the	race	down	an	inclined	plane	and	explain	why.	See	if	your	prediction	is	correct.	You	could	also	do	this	experiment	by	collecting	several	empty	cylindrical
containers	of	the	same	size	and	filling	them	with	different	materials	such	as	wet	or	dry	sand.	Calculate	the	final	speed	of	a	solid	cylinder	that	rolls	down	a	2.00-m-high	incline.	The	cylinder	starts	from	rest,	has	a	mass	of	0.750	kg,	and	has	a	radius	of	4.00	cm.	Strategy	We	can	solve	for	the	final	velocity	using	conservation	of	energy,	but	we	must	first
express	rotational	quantities	in	terms	of	translational	quantities	to	end	up	with	v	as	the	only	unknown.	Solution	Conservation	of	energy	for	this	situation	is	written	as	described	above:	[latex]mgh=\frac{1}{2}{mv}^{2}+\frac{1}{2}{\mathrm{I\omega	}}^{2}[/latex].	Before	we	can	solve	for	v	,	we	must	get	an	expression	for	I	from	Figure	5.	Because
v	and	ω	are	related	(note	here	that	the	cylinder	is	rolling	without	slipping),	we	must	also	substitute	the	relationship	ω	=	v/R	into	the	expression.	These	substitutions	yield	[latex]{mgh}=\frac{1}{2}{{mv}}^{2}+\frac{1}{2}\left(\frac{1}{2}{mR}^{2}\right)\left(\frac{{v}^{2}}{{R}^{2}}\right)[/latex].	Interestingly,	the	cylinder’s	radius	R	and	mass
m	cancel,	yielding	[latex]{gh}=\frac{1}{2}{v}^{2}+\frac{1}{4}{v}^{2}=\frac{3}{4}{v}^{2}[/latex].	Solving	algebraically,	the	equation	for	the	final	velocity	v	gives	[latex]v={\left(\frac{4\text{gh}}{3}\right)}^{1/2}[/latex].	Substituting	known	values	into	the	resulting	expression	yields	[latex]v=
{\left[\frac{4\left(9.80{\text{m/s}}^{2}\right)\left(\text{2.00	m}\right)}{3}\right]}^{1/2}=\text{5.11	m/s}[/latex].	Discussion	Because	m	and	R	cancel,	the	result	[latex]v={\left(\frac{4}{3}\text{gh}\right)}^{1/2}[/latex]	is	valid	for	any	solid	cylinder,	implying	that	all	solid	cylinders	will	roll	down	an	incline	at	the	same	rate	independent	of	their
masses	and	sizes.	(Rolling	cylinders	down	inclines	is	what	Galileo	actually	did	to	show	that	objects	fall	at	the	same	rate	independent	of	mass.)	Note	that	if	the	cylinder	slid	without	friction	down	the	incline	without	rolling,	then	the	entire	gravitational	potential	energy	would	go	into	translational	kinetic	energy.	Thus,	[latex]\frac{1}{2}{mv}^{2}=
{mgh}[/latex]	and	[latex]v=(2gh)^{1/2}[/latex],	which	is	22%	greater	than	[latex](4gh/3)^{1/2}[/latex].	That	is,	the	cylinder	would	go	faster	at	the	bottom.	Analogy	of	Rotational	and	Translational	Kinetic	Energy	Is	rotational	kinetic	energy	completely	analogous	to	translational	kinetic	energy?	What,	if	any,	are	their	differences?	Give	an	example	of
each	type	of	kinetic	energy.	Solution	Yes,	rotational	and	translational	kinetic	energy	are	exact	analogs.	They	both	are	the	energy	of	motion	involved	with	the	coordinated	(non-random)	movement	of	mass	relative	to	some	reference	frame.	The	only	difference	between	rotational	and	translational	kinetic	energy	is	that	translational	is	straight	line	motion
while	rotational	is	not.	An	example	of	both	kinetic	and	translational	kinetic	energy	is	found	in	a	bike	tire	while	being	ridden	down	a	bike	path.	The	rotational	motion	of	the	tire	means	it	has	rotational	kinetic	energy	while	the	movement	of	the	bike	along	the	path	means	the	tire	also	has	translational	kinetic	energy.	If	you	were	to	lift	the	front	wheel	of
the	bike	and	spin	it	while	the	bike	is	stationary,	then	the	wheel	would	have	only	rotational	kinetic	energy	relative	to	the	Earth.	Build	your	own	system	of	heavenly	bodies	and	watch	the	gravitational	ballet.	With	this	orbit	simulator,	you	can	set	initial	positions,	velocities,	and	masses	of	2,	3,	or	4	bodies,	and	then	see	them	orbit	each	other.	Click	to	run
the	simulation.	Section	Summary	The	rotational	kinetic	energy	KErot	for	an	object	with	a	moment	of	inertia	I	and	an	angular	velocity	ω	is	given	by	[latex]{\text{KE}}_{\text{rot}}=\frac{1}{2}{{I\omega	}}^{2}[/latex].	Helicopters	store	large	amounts	of	rotational	kinetic	energy	in	their	blades.	This	energy	must	be	put	into	the	blades	before	takeoff
and	maintained	until	the	end	of	the	flight.	The	engines	do	not	have	enough	power	to	simultaneously	provide	lift	and	put	significant	rotational	energy	into	the	blades.	Work	and	energy	in	rotational	motion	are	completely	analogous	to	work	and	energy	in	translational	motion.	The	equation	for	the	work-energy	theorem	for	rotational	motion	is,
[latex]\text{net	}W=\frac{1}{2}{{I\omega	}}^{2}-\frac{1}{2}I{{\omega	}_{\text{0}}}^{2}[/latex].	1.	Describe	the	energy	transformations	involved	when	a	yo-yo	is	thrown	downward	and	then	climbs	back	up	its	string	to	be	caught	in	the	user’s	hand.	2.	What	energy	transformations	are	involved	when	a	dragster	engine	is	revved,	its	clutch	let	out
rapidly,	its	tires	spun,	and	it	starts	to	accelerate	forward?	Describe	the	source	and	transformation	of	energy	at	each	step.	3.	The	Earth	has	more	rotational	kinetic	energy	now	than	did	the	cloud	of	gas	and	dust	from	which	it	formed.	Where	did	this	energy	come	from?	Figure	8.	An	immense	cloud	of	rotating	gas	and	dust	contracted	under	the	influence
of	gravity	to	form	the	Earth	and	in	the	process	rotational	kinetic	energy	increased.	(credit:	NASA)	1.	This	problem	considers	energy	and	work	aspects	of	mass	distribution	on	a	merry-go-round	(use	data	from	Example	1	as	needed.	(a)	Calculate	the	rotational	kinetic	energy	in	the	merry-go-round	plus	child	when	they	have	an	angular	velocity	of	20.0
rpm.	(b)	Using	energy	considerations,	find	the	number	of	revolutions	the	father	will	have	to	push	to	achieve	this	angular	velocity	starting	from	rest.	(c)	Again,	using	energy	considerations,	calculate	the	force	the	father	must	exert	to	stop	the	merry-go-round	in	two	revolutionsx	2.	What	is	the	final	velocity	of	a	hoop	that	rolls	without	slipping	down	a
5.00-m-high	hill,	starting	from	rest?	3.	(a)	Calculate	the	rotational	kinetic	energy	of	Earth	on	its	axis.	(b)	What	is	the	rotational	kinetic	energy	of	Earth	in	its	orbit	around	the	Sun?	5.	A	baseball	pitcher	throws	the	ball	in	a	motion	where	there	is	rotation	of	the	forearm	about	the	elbow	joint	as	well	as	other	movements.	If	the	linear	velocity	of	the	ball
relative	to	the	elbow	joint	is	20.0	m/s	at	a	distance	of	0.480	m	from	the	joint	and	the	moment	of	inertia	of	the	forearm	is	0.500	kg	⋅	m2,	what	is	the	rotational	kinetic	energy	of	the	forearm?	6.	While	punting	a	football,	a	kicker	rotates	his	leg	about	the	hip	joint.	The	moment	of	inertia	of	the	leg	is	3.75	kg	⋅	m	and	its	rotational	kinetic	energy	is	175	J.	(a)
What	is	the	angular	velocity	of	the	leg?	(b)	What	is	the	velocity	of	tip	of	the	punter’s	shoe	if	it	is	1.05	m	from	the	hip	joint?	(c)	Explain	how	the	football	can	be	given	a	velocity	greater	than	the	tip	of	the	shoe	(necessary	for	a	decent	kick	distance).	7.	A	bus	contains	a	1500	kg	flywheel	(a	disk	that	has	a	0.600	m	radius)	and	has	a	total	mass	of	10,000	kg.
(a)	Calculate	the	angular	velocity	the	flywheel	must	have	to	contain	enough	energy	to	take	the	bus	from	rest	to	a	speed	of	20.0	m/s,	assuming	90.0%	of	the	rotational	kinetic	energy	can	be	transformed	into	translational	energy.	(b)	How	high	a	hill	can	the	bus	climb	with	this	stored	energy	and	still	have	a	speed	of	3.00	m/s	at	the	top	of	the	hill?
Explicitly	show	how	you	follow	the	steps	in	the	Problem-Solving	Strategy	for	Rotational	Energy	instructions	above.	8.	A	ball	with	an	initial	velocity	of	8.00	m/s	rolls	up	a	hill	without	slipping.	Treating	the	ball	as	a	spherical	shell,	calculate	the	vertical	height	it	reaches.	(b)	Repeat	the	calculation	for	the	same	ball	if	it	slides	up	the	hill	without	rolling.	9.
While	exercising	in	a	fitness	center,	a	man	lies	face	down	on	a	bench	and	lifts	a	weight	with	one	lower	leg	by	contacting	the	muscles	in	the	back	of	the	upper	leg.	(a)	Find	the	angular	acceleration	produced	given	the	mass	lifted	is	10.0	kg	at	a	distance	of	28.0	cm	from	the	knee	joint,	the	moment	of	inertia	of	the	lower	leg	is	0.900	kg	⋅	m2,	the	muscle
force	is	1500	N,	and	its	effective	perpendicular	lever	arm	is	3.00	cm.	(b)	How	much	work	is	done	if	the	leg	rotates	through	an	angle	of	20.0º	with	a	constant	force	exerted	by	the	muscle?	10.	To	develop	muscle	tone,	a	woman	lifts	a	2.00-kg	weight	held	in	her	hand.	She	uses	her	biceps	muscle	to	flex	the	lower	arm	through	an	angle	of	60.0º.	(a)	What	is
the	angular	acceleration	if	the	weight	is	24.0	cm	from	the	elbow	joint,	her	forearm	has	a	moment	of	inertia	of	0.250	kg	⋅	m2,	and	the	net	force	she	exerts	is	750	N	at	an	effective	perpendicular	lever	arm	of	2.00	cm?	(b)	How	much	work	does	she	do?	11.	Consider	two	cylinders	that	start	down	identical	inclines	from	rest	except	that	one	is	frictionless.
Thus	one	cylinder	rolls	without	slipping,	while	the	other	slides	frictionlessly	without	rolling.	They	both	travel	a	short	distance	at	the	bottom	and	then	start	up	another	incline.	(a)	Show	that	they	both	reach	the	same	height	on	the	other	incline,	and	that	this	height	is	equal	to	their	original	height.	(b)	Find	the	ratio	of	the	time	the	rolling	cylinder	takes	to
reach	the	height	on	the	second	incline	to	the	time	the	sliding	cylinder	takes	to	reach	the	height	on	the	second	incline.	(c)	Explain	why	the	time	for	the	rolling	motion	is	greater	than	that	for	the	sliding	motion.	12.	What	is	the	moment	of	inertia	of	an	object	that	rolls	without	slipping	down	a	2.00-m-high	incline	starting	from	rest,	and	has	a	final	velocity
of	6.00	m/s?	Express	the	moment	of	inertia	as	a	multiple	of	MR2,	where	M	is	the	mass	of	the	object	and	R	is	its	radius.	13.	Suppose	a	200-kg	motorcycle	has	two	wheels	like	in	Problem	6	from	Dynamics	of	Rotational	Motion:	Rotational	Inertia	and	is	heading	toward	a	hill	at	a	speed	of	30.0	m/s.	(a)	How	high	can	it	coast	up	the	hill,	if	you	neglect
friction?	(b)	How	much	energy	is	lost	to	friction	if	the	motorcycle	only	gains	an	altitude	of	35.0	m	before	coming	to	rest?	14.	In	softball,	the	pitcher	throws	with	the	arm	fully	extended	(straight	at	the	elbow).	In	a	fast	pitch	the	ball	leaves	the	hand	with	a	speed	of	139	km/h.	(a)	Find	the	rotational	kinetic	energy	of	the	pitcher’s	arm	given	its	moment	of
inertia	is	0.720	kg	⋅	m2	and	the	ball	leaves	the	hand	at	a	distance	of	0.600	m	from	the	pivot	at	the	shoulder.	(b)	What	force	did	the	muscles	exert	to	cause	the	arm	to	rotate	if	their	effective	perpendicular	lever	arm	is	4.00	cm	and	the	ball	is	0.156	kg?	15.	Construct	Your	Own	Problem.	Consider	the	work	done	by	a	spinning	skater	pulling	her	arms	in	to
increase	her	rate	of	spin.	Construct	a	problem	in	which	you	calculate	the	work	done	with	a	“force	multiplied	by	distance”	calculation	and	compare	it	to	the	skater’s	increase	in	kinetic	energy.	work-energy	theorem:	if	one	or	more	external	forces	act	upon	a	rigid	object,	causing	its	kinetic	energy	to	change	from	[latex]{\text{KE}}_{\text{1}}[/latex]	to
[latex]{\text{KE}}_{\text{2}}[/latex]	,	then	the	work	W	done	by	the	net	force	is	equal	to	the	change	in	kinetic	energy	rotational	kinetic	energy:	the	kinetic	energy	due	to	the	rotation	of	an	object.	This	is	part	of	its	total	kinetic	energy	1.	(a)	185	J	(b)	0.0785	rev	(c)	W	=	9.81	N	3.	(a)	2.57	×	1029		(b)	[latex]
{\text{KE}}_{\text{rot}}=2\text{.}\text{65}\times	{\text{10}}^{\text{33}}\text{J}[/latex]	5.	KErot	=	434	J	7.	(a)	128	rad/s	(b)	19.9	m	9.	(a)	10.4	rad/s2	(b)	net	W	=	6.11	J	14.		(a)	1.49	kJ	(b)	2.52	×	104	N	Rohit	Gupta,	Brilliant	Physics,	Matt	DeCross,	and	contributed	According	to	work-kinetic	theorem	for	rotation,	the	amount	of	work	done	by	all	the
torques	acting	on	a	rigid	body	under	a	fixed	axis	rotation	(pure	rotation)	equals	the	change	in	its	rotational	kinetic	energy:	\[{W_\text{torque}}	=	\Delta	K{E_\text{rotation}}.\]	Work	done	by	a	torque	can	be	calculated	by	taking	an	analogy	from	work	done	by	force.	Work	done	by	force	is	calculated	as	the	dot	product	of	force	and	displacement	of	point
of	application	of	force.	In	case	of	angular	motion,	force	is	replaced	by	torque	and	linear	displacement	is	replaced	by	angular	displacement.	Thus,	\[W	=	\int_{}^{}	{\vec	\tau	\cdot	d\vec	\theta	}.	\]	Consider	a	rigid	body,	rotating	freely	about	a	fixed	axis	of	rotation.	Its	initial	angular	speed	is	\({\omega_i}\).	Suppose	a	force	\(F\)	is	now	applied	(at	a
distance	of	\(r\)	from	the	axis	of	rotation)	to	increase	its	angular	speed.	This	force	will	produce	a	torque	about	the	axis	of	rotation:	\[\vec	\tau	=	\vec	r	\times	\vec	F.\]	From	the	rotational	form	of	Newton's	second	law,	\[{{\vec	\tau	}_\text{rot}}	=	{I_\text{rot}}\vec	\alpha	.\]	Here,	\({I_\text{rot}}\)	is	the	moment	of	the	body	about	the	axis	of	rotation
and	\(\alpha	\)	is	the	angular	acceleration	produced	in	the	body.	Also,	the	work	done	by	torque	equals	\[W	=	\int_{}^{}	{\tau	\cdot	d\theta	}	.\]	Angular	acceleration	changes	the	angular	speed	of	the	body	and	\[\alpha	=	\frac{{d\omega	}}{{dt}}.\]	Therefore,	the	work	done	by	toque	can	be	written	as	follows:	\[W	=	\int_{}^{}
{{I_\text{rot}}\frac{{d\omega	}}{{dt}}\cdot	d\theta	}.	\]	Angular	velocity	is	related	to	the	rate	of	rotation	of	the	body:	\[\omega	=	\frac{{d\theta	}}{{dt}}.\]	On	calculating,	one	finds	\[W	=	\int_{{\omega	_o}}^\omega	{I_\text{rot}	\omega	\,	d\omega	}	=	\frac{1}{2}{I_\text{rot}}{\omega	^2}	-	\frac{1}{2}{I_\text{rot}}\omega	_{^o}^2.\]	Thus,
the	work	done	by	the	torque	equals	the	change	in	rotational	kinetic	energy	of	the	body.	Work	done	by	a	constant	torque	is	\[W	=	\tau	\theta	\]	According	to	the	work-kinetic	theorem	for	rotation,	work	done	by	torque	equals	change	in	rotational	kinetic	energy	\[W	=	\Delta	K{E_\text{rot}}\]	\[\tau	\theta	=	\Delta	K{E_\text{rot}}\]	\[\theta	=	\frac{{\Delta
K{E_\text{rot}}}}{\tau	}\]	Since,	the	change	in	rotational	kinetic	energy	and	torque	applied	are	equal,	thus	the	angle	rotated	by	all	the	objects	are	same.	Skip	to	main	content	\(\require{cancel}ewcommand{\N}{\mathbb	N}	ewcommand{\Z}{\mathbb	Z}	ewcommand{\Q}{\mathbb	Q}	ewcommand{\R}{\mathbb	R}	ewcommand{\lt}{}
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{$\scriptscriptstyle\phantom{\,#1\,}$}}}	\)	This	work	can	be	written	in	terms	of	torque	and	angle	\(\Delta	\theta\)	of	rotation.	With	\(R\)	as	radius	of	the	wheel,	arc	distance,	\(\Delta	s	=	R\Delta\theta\text{.}\)	\begin{equation*}	W	=	F\,	\Delta	s	=	F\,	R\,	\Delta\theta.	\end{equation*}	The	torque	by	the	force	applied	at	the	rim	is	\(\tau	=	FR\text{.}\)
Therefore,	the	work	by	the	force	in	rotating	the	wheel	by	and	angle	\(\Delta\theta\)	is	\begin{equation*}	W	=	\tau	\Delta	\theta.	\end{equation*}	This	work	is	called	rotational	work.	(a)	How	much	work	is	done	for	each	quarter	turn?	(b)	Suppose,	you	use	a	\(6\)-in	wrench,	and	apply	the	same	force,	except	that	the	force	now	would	act	at	a	distance	of
about	\(5\text{	inches}\)	from	the	center	of	the	bolt.	How	much	work	would	now	be	done	for	each	quarter	turn?	Found	typo?	In	physics,	one	major	player	in	the	linear-force	game	is	work;	in	equation	form,	work	equals	force	times	distance,	or	W	=	Fs.	Work	has	a	rotational	analog.	To	relate	a	linear	force	acting	for	a	certain	distance	with	the	idea	of
rotational	work,	you	relate	force	to	torque	(its	angular	equivalent)	and	distance	to	angle.	When	force	moves	an	object	through	a	distance,	work	is	done	on	the	object.	Similarly,	when	a	torque	rotates	an	object	through	an	angle,	work	is	done.	In	this	example,	you	work	out	how	much	work	is	done	when	you	rotate	a	wheel	by	pulling	a	string	attached	to
the	wheel’s	outside	edge	(see	the	figure).	Exerting	a	force	to	turn	a	tire.	Work	is	the	amount	of	force	applied	to	an	object	multiplied	by	the	distance	it’s	applied.	In	this	case,	a	force	F	is	applied	with	the	string.	Bingo!	The	string	lets	you	make	the	handy	transition	between	linear	and	rotational	work.	So	how	much	work	is	done?	Use	the	following
equation:	W	=	Fs	where	s	is	the	distance	the	person	pulling	the	string	applies	the	force	over.	In	this	case,	the	distance	s	equals	the	radius	multiplied	by	the	angle	through	which	the	wheel	turns,	so	you	get	right	angles	to	the	radius.	So	you’re	left	with	When	the	string	is	pulled,	applying	a	constant	torque	that	turns	the	wheel,	the	work	done	equals	This
makes	sense,	because	linear	work	is	Fs,	and	to	convert	to	rotational	work,	you	convert	from	force	to	torque	and	from	distance	to	angle.	The	units	here	are	the	standard	units	for	work	—	joules	in	the	MKS	(meter-kilogram-second)	system.	You	have	to	give	the	angle	in	radians	for	the	conversion	between	linear	work	and	rotational	work	to	come	out
right.	Say	that	you	have	a	plane	that	uses	propellers,	and	you	want	to	determine	how	much	work	the	plane’s	engine	does	on	a	propeller	when	applying	a	constant	torque	of	600	newton-meters	over	100	revolutions.	You	start	with	the	work	equation	in	terms	of	torque:	Plugging	the	numbers	into	the	equation	gives	you	the	work:	By	the	end	of	this
section,	you	will	be	able	to:	Derive	the	equation	for	rotational	work.	Calculate	rotational	kinetic	energy.	Demonstrate	the	Law	of	Conservation	of	Energy.	In	this	module,	we	will	learn	about	work	and	energy	associated	with	rotational	motion.	Figure	10.13	shows	a	worker	using	an	electric	grindstone	propelled	by	a	motor.	Sparks	are	flying,	and	noise
and	vibration	are	created	as	layers	of	steel	are	pared	from	the	pole.	The	stone	continues	to	turn	even	after	the	motor	is	turned	off,	but	it	is	eventually	brought	to	a	stop	by	friction.	Clearly,	the	motor	had	to	work	to	get	the	stone	spinning.	This	work	went	into	heat,	light,	sound,	vibration,	and	considerable	rotational	kinetic	energy.	Figure	10.13	The
motor	works	in	spinning	the	grindstone,	giving	it	rotational	kinetic	energy.	That	energy	is	then	converted	to	heat,	light,	sound,	and	vibration.	(credit:	U.S.	Navy	photo	by	Mass	Communication	Specialist	Seaman	Zachary	David	Bell)	Work	must	be	done	to	rotate	objects	such	as	grindstones	or	merry-go-rounds.	Work	was	defined	in	Uniform	Circular
Motion	and	Gravitation	for	translational	motion,	and	we	can	build	on	that	knowledge	when	considering	work	done	in	rotational	motion.	The	simplest	rotational	situation	is	one	in	which	the	net	force	is	exerted	perpendicular	to	the	radius	of	a	disk	(as	shown	in	Figure	10.14)	and	remains	perpendicular	as	the	disk	starts	to	rotate.	The	force	is	parallel	to
the	displacement,	and	so	the	net	work	done	is	the	product	of	the	force	times	the	arc	length	traveled:	net	W	=	(	net	F	)	Δ	s	.	net	W	=	(	net	F	)	Δ	s	.	10.53	To	get	torque	and	other	rotational	quantities	into	the	equation,	we	multiply	and	divide	the	right-hand	side	of	the	equation	by	rr,	and	gather	terms:	net	W	=	(	r	net	F	)	Δs	r	.	net	W	=	(	r	net	F	)	Δs	r	.
10.54	We	recognize	that	r	net	F=	net	τr	net	F=	net	τ	and	Δs/r=θΔs/r=θ,	so	thatnet	W=net	τθ.net	W=net	τθ.	10.55	This	equation	is	the	expression	for	rotational	work.	It	is	very	similar	to	the	familiar	definition	of	translational	work	as	force	multiplied	by	distance.	Here,	torque	is	analogous	to	force,	and	angle	is	analogous	to	distance.	The	equation	net
W=net	τθnet	W=net	τθ	is	valid	in	general,	even	though	it	was	derived	for	a	special	case.To	get	an	expression	for	rotational	kinetic	energy,	we	must	again	perform	some	algebraic	manipulations.	The	first	step	is	to	note	that	net	τ=Iαnet	τ=Iα,	so	thatnet	W=Iαθ.net	W=Iαθ.	10.56	Figure	10.14	The	net	force	on	this	disk	is	kept	perpendicular	to	its	radius
as	the	force	causes	the	disk	to	rotate.	The	net	work	done	is	thus	net	FΔsnet	FΔs.	The	net	work	goes	into	rotational	kinetic	energy.	Work	and	energy	in	rotational	motion	are	completely	analogous	to	work	and	energy	in	translational	motion,	first	presented	in	Uniform	Circular	Motion	and	Gravitation.	Now,	we	solve	one	of	the	rotational	kinematics
equations	for	αθαθ.	We	start	with	the	equation	ω	2	=	ω	0	2	+	2	αθ	.	ω	2	=	ω	0	2	+	2	αθ	.	10.57	Next,	we	solve	for	αθαθ:	αθ	=	ω	2	−	ω	0	2	2	.	αθ	=	ω	2	−	ω	0	2	2	.	10.58	Substituting	this	into	the	equation	for	net	WW	and	gathering	terms	yields	net	W=12Iω2−12I	ω	0	2	.net	W=12Iω2−12I	ω	0	2	.	10.59	This	equation	is	the	work-energy	theorem	for
rotational	motion	only.	As	you	may	recall,	net	work	changes	the	kinetic	energy	of	a	system.	Through	an	analogy	with	translational	motion,	we	define	the	term	12Iω212Iω2	to	be	rotational	kinetic	energy	KErotKErot	for	an	object	with	a	moment	of	inertia	II	and	an	angular	velocity	ωω:	KE	rot	=	1	2	Iω	2	.	KE	rot	=	1	2	Iω	2	.	10.60	The	expression	for
rotational	kinetic	energy	is	exactly	analogous	to	translational	kinetic	energy,	with	II	being	analogous	to	mm	and	ωω	to	vv.	Rotational	kinetic	energy	has	important	effects.	Flywheels,	for	example,	can	be	used	to	store	large	amounts	of	rotational	kinetic	energy	in	a	vehicle,	as	seen	in	Figure	10.15.	Figure	10.15	Experimental	vehicles,	such	as	this	bus,
have	been	constructed	in	which	rotational	kinetic	energy	is	stored	in	a	large	flywheel.	When	the	bus	goes	down	a	hill,	its	transmission	converts	its	gravitational	potential	energy	into	KErotKErot.	It	can	also	convert	translational	kinetic	energy,	when	the	bus	stops,	into	KErotKErot.	The	flywheel’s	energy	can	then	be	used	to	accelerate,	to	go	up	another
hill,	or	to	keep	the	bus	from	slowing	down	due	to	friction.	Consider	a	person	who	spins	a	large	grindstone	by	placing	her	hand	on	its	edge	and	exerting	a	force	through	part	of	a	revolution	as	shown	in	Figure	10.16.	In	this	example,	we	verify	that	the	work	done	by	the	torque	she	exerts	equals	the	change	in	rotational	energy.	(a)	How	much	work	is	done
if	she	exerts	a	force	of	200	N	through	a	rotation	of	1.00	rad(57.3º)1.00	rad(57.3º)?	The	force	is	kept	perpendicular	to	the	grindstone’s	0.320-m	radius	at	the	point	of	application,	and	the	effects	of	friction	are	negligible.	(b)	What	is	the	final	angular	velocity	if	the	grindstone	has	a	mass	of	85.0	kg?	(c)	What	is	the	final	rotational	kinetic	energy?	(It	should
equal	the	work.)Strategy	To	find	the	work,	we	can	use	the	equation	net	W=net	τθnet	W=net	τθ.	We	have	enough	information	to	calculate	the	torque	and	are	given	the	rotation	angle.	In	the	second	part,	we	can	find	the	final	angular	velocity	using	one	of	the	kinematic	relationships.	In	the	last	part,	we	can	calculate	the	rotational	kinetic	energy	from	its
expression	in	KErot=12Iω2KErot=12Iω2.Solution	for	(a)	The	net	work	is	expressed	in	the	equation	net	W=net	τθ,net	W=net	τθ,	where	net	ττ	is	the	applied	force	multiplied	by	the	radius	(rF)(rF)	because	there	is	no	retarding	friction,	and	the	force	is	perpendicular	to	rr.	The	angle	θθ	is	given.	Substituting	the	given	values	in	the	equation	above	yields
net	W	=	rF	θ=	0.320	m	200	N	1.00	rad	=	64.0	N⋅m.	net	W	=	rF	θ=	0.320	m	200	N	1.00	rad	=	64.0	N⋅m.	Noting	that	1	N·m=1	J1	N·m=1	J,net	W=64.0	J.net	W=64.0	J.	Figure	10.16	A	large	grindstone	is	given	a	spin	by	a	person	grasping	its	outer	edge.	Solution	for	(b)	To	find	ωω	from	the	given	information	requires	more	than	one	step.	We	start	with	the
kinematic	relationship	in	the	equationω2=	ω	0	2	+2αθ.ω2=	ω	0	2	+2αθ.	Note	that	ω0=0ω0=0	because	we	start	from	rest.	Taking	the	square	root	of	the	resulting	equation	gives	Now	we	need	to	find	αα.	One	possibility	is	where	the	torque	is	net	τ=rF=0.320	m200	N=64.0	N⋅m.net	τ=rF=0.320	m200	N=64.0	N⋅m.	The	formula	for	the	moment	of	inertia
for	a	disk	is	found	in	Figure	10.11:	I	=	1	2	MR	2	=	0.5	85.0	kg	0.320	m	2	=	4.352	kg	⋅	m	2	.	I	=	1	2	MR	2	=	0.5	85.0	kg	0.320	m	2	=	4.352	kg	⋅	m	2	.	Substituting	the	values	of	torque	and	moment	of	inertia	into	the	expression	for	αα,	we	obtain	α=64.0	N⋅m4.352	kg⋅m2=14.7rads2.α=64.0	N⋅m4.352	kg⋅m2=14.7rads2.	Now,	substitute	this	value	and	the
given	value	for	θθ	into	the	above	expression	for	ωω:	ω	=	2	αθ	1	/	2	=	2	14.7	rad	s	2	1.00	rad	1	/	2	=	5.42	rad	s	.	ω	=	2	αθ	1	/	2	=	2	14.7	rad	s	2	1.00	rad	1	/	2	=	5.42	rad	s	.	Solution	for	(c)	The	final	rotational	kinetic	energy	is	KErot=12Iω2.KErot=12Iω2.	Both	II	and	ωω	were	found	above.	Thus,	KE	rot	=	0.5	4.352	kg⋅m25.42	rad/s2=64.0	J.	KE	rot	=	0.5
4.352	kg⋅m25.42	rad/s2=64.0	J.	Discussion	The	final	rotational	kinetic	energy	equals	the	work	done	by	the	torque,	which	confirms	that	the	work	done	went	into	rotational	kinetic	energy.	We	could,	in	fact,	have	used	an	expression	for	energy	instead	of	a	kinematic	relation	to	solve	part	(b).	We	will	do	this	in	later	examples.	Helicopter	pilots	are	quite
familiar	with	rotational	kinetic	energy.	They	know,	for	example,	that	a	point	of	no	return	will	be	reached	if	they	allow	their	blades	to	slow	below	a	critical	angular	velocity	during	flight.	The	blades	lose	lift,	and	it	is	impossible	to	immediately	get	the	blades	spinning	fast	enough	to	regain	it.	Rotational	kinetic	energy	must	be	supplied	to	the	blades	to	get
them	to	rotate	faster,	and	enough	energy	cannot	be	supplied	in	time	to	avoid	a	crash.	Because	of	weight	limitations,	helicopter	engines	are	too	small	to	supply	both	the	energy	needed	for	lift	and	to	replenish	the	rotational	kinetic	energy	of	the	blades	once	they	have	slowed	down.	The	rotational	kinetic	energy	is	put	into	them	before	takeoff	and	must
not	be	allowed	to	drop	below	this	crucial	level.	One	possible	way	to	avoid	a	crash	is	to	use	the	gravitational	potential	energy	of	the	helicopter	to	replenish	the	rotational	kinetic	energy	of	the	blades	by	losing	altitude	and	aligning	the	blades	so	that	the	helicopter	is	spun	up	in	the	descent.	Of	course,	if	the	helicopter’s	altitude	is	too	low,	then	there	is
insufficient	time	for	the	blade	to	regain	lift	before	reaching	the	ground.	Determine	that	energy	or	work	is	involved	in	the	rotation.	Determine	the	system	of	interest.	A	sketch	usually	helps.	Analyze	the	situation	to	determine	the	types	of	work	and	energy	involved.	For	closed	systems,	mechanical	energy	is	conserved.	That	is,
KEi+PEi=KEf+PEf.KEi+PEi=KEf+PEf.	Note	that	KEiKEi	and	KEfKEf	may	each	include	translational	and	rotational	contributions.	For	open	systems,	mechanical	energy	may	not	be	conserved,	and	other	forms	of	energy	(referred	to	previously	as	OEOE),	such	as	heat	transfer,	may	enter	or	leave	the	system.	Determine	what	they	are,	and	calculate	them
as	necessary.	Eliminate	terms	wherever	possible	to	simplify	the	algebra.	Check	the	answer	to	see	if	it	is	reasonable.	A	typical	small	rescue	helicopter,	similar	to	the	one	in	Figure	10.17,	has	four	blades,	each	is	4.00	m	long	and	has	a	mass	of	50.0	kg.	The	blades	can	be	approximated	as	thin	rods	that	rotate	about	one	end	of	an	axis	perpendicular	to	their
length.	The	helicopter	has	a	total	loaded	mass	of	1000	kg.	(a)	Calculate	the	rotational	kinetic	energy	in	the	blades	when	they	rotate	at	300	rpm.	(b)	Calculate	the	translational	kinetic	energy	of	the	helicopter	when	it	flies	at	20.0	m/s,	and	compare	it	with	the	rotational	energy	in	the	blades.	(c)	To	what	height	could	the	helicopter	be	raised	if	all	of	the
rotational	kinetic	energy	could	be	used	to	lift	it?Strategy	Rotational	and	translational	kinetic	energies	can	be	calculated	from	their	definitions.	The	last	part	of	the	problem	relates	to	the	idea	that	energy	can	change	form,	in	this	case	from	rotational	kinetic	energy	to	gravitational	potential	energy.	Solution	for	(a)	The	rotational	kinetic	energy	is
KErot=12Iω2.KErot=12Iω2.	We	must	convert	the	angular	velocity	to	radians	per	second	and	calculate	the	moment	of	inertia	before	we	can	find	KErotKErot.	The	angular	velocity	ωω	isω=300	rev1.00	min⋅2π	rad1	rev⋅1.00	min60.0	s=31.4rads.ω=300	rev1.00	min⋅2π	rad1	rev⋅1.00	min60.0	s=31.4rads.	The	moment	of	inertia	of	one	blade	will	be	that	of	a
thin	rod	rotated	about	its	end,	found	in	Figure	10.11.	The	total	II	is	four	times	this	moment	of	inertia,	because	there	are	four	blades.	Thus,I=4Mℓ23=4×50.0	kg4.00	m23=1067	kg⋅m2.I=4Mℓ23=4×50.0	kg4.00	m23=1067	kg⋅m2.	Entering	ωω	and	II	into	the	expression	for	rotational	kinetic	energy	gives	KE	rot	=	0.5	(	1067	kg	⋅	m	2	)	31.4	rad/s	2	=	5.26
×	10	5	J	KE	rot	=	0.5	(	1067	kg	⋅	m	2	)	31.4	rad/s	2	=	5.26	×	10	5	J	Solution	for	(b)	Translational	kinetic	energy	was	defined	in	Uniform	Circular	Motion	and	Gravitation.	Entering	the	given	values	of	mass	and	velocity,	we	obtainKEtrans=12mv2=0.51000	kg20.0	m/s2=2.00×105	J.KEtrans=12mv2=0.51000	kg20.0	m/s2=2.00×105	J.	To	compare	kinetic
energies,	we	take	the	ratio	of	translational	kinetic	energy	to	rotational	kinetic	energy.	This	ratio	is	2.00×105	J5.26×105	J=0.380.2.00×105	J5.26×105	J=0.380.	Solution	for	(c)	At	the	maximum	height,	all	rotational	kinetic	energy	will	have	been	converted	to	gravitational	energy.	To	find	this	height,	we	equate	those	two	energies:	KE	rot	=	PE	grav	KE
rot	=	PE	grav	or	1	2	Iω	2	=	mgh	.	1	2	Iω	2	=	mgh	.	We	now	solve	for	hh	and	substitute	known	values	into	the	resulting	equation	h	=	12	Iω	2	mg	=	5.26	×	10	5	J	1000	kg	9.80	m/s	2	=	53.7	m	.	h	=	12	Iω	2	mg	=	5.26	×	10	5	J	1000	kg	9.80	m/s	2	=	53.7	m	.	Discussion	The	ratio	of	translational	energy	to	rotational	kinetic	energy	is	only	0.380.	This	ratio
tells	us	that	most	of	the	kinetic	energy	of	the	helicopter	is	in	its	spinning	blades—something	you	probably	would	not	suspect.	The	53.7	m	height	to	which	the	helicopter	could	be	raised	with	the	rotational	kinetic	energy	is	also	impressive,	again	emphasizing	the	amount	of	rotational	kinetic	energy	in	the	blades.	Figure	10.17	The	first	image	shows	how
helicopters	store	large	amounts	of	rotational	kinetic	energy	in	their	blades.	This	energy	must	be	put	into	the	blades	before	takeoff	and	maintained	until	the	end	of	the	flight.	The	engines	do	not	have	enough	power	to	simultaneously	provide	lift	and	put	significant	rotational	energy	into	the	blades.	The	second	image	shows	a	helicopter	from	the	Auckland
Westpac	Rescue	Helicopter	Service.	Over	50,000	lives	have	been	saved	since	its	operations	beginning	in	1973.	Here,	a	water	rescue	operation	is	shown.	(credit:	111	Emergency,	Flickr)	Conservation	of	energy	includes	rotational	motion,	because	rotational	kinetic	energy	is	another	form	of	KE	KE	.	Uniform	Circular	Motion	and	Gravitation	has	a
detailed	treatment	of	conservation	of	energy.	One	of	the	quality	controls	in	a	tomato	soup	factory	consists	of	rolling	filled	cans	down	a	ramp.	If	they	roll	too	fast,	the	soup	is	too	thin.	Why	should	cans	of	identical	size	and	mass	roll	down	an	incline	at	different	rates?	And	why	should	the	thickest	soup	roll	the	slowest?	The	easiest	way	to	answer	these
questions	is	to	consider	energy.	Suppose	each	can	starts	down	the	ramp	from	rest.	Each	can	starting	from	rest	means	each	starts	with	the	same	gravitational	potential	energy	PEgravPEgrav,	which	is	converted	entirely	to	KEKE,	provided	each	rolls	without	slipping.	KEKE,	however,	can	take	the	form	of	KEtransKEtrans	or	KErotKErot,	and	total	KEKE
is	the	sum	of	the	two.	If	a	can	rolls	down	a	ramp,	it	puts	part	of	its	energy	into	rotation,	leaving	less	for	translation.	Thus,	the	can	goes	slower	than	it	would	if	it	slid	down.	Furthermore,	the	thin	soup	does	not	rotate,	whereas	the	thick	soup	does,	because	it	sticks	to	the	can.	The	thick	soup	thus	puts	more	of	the	can’s	original	gravitational	potential
energy	into	rotation	than	the	thin	soup,	and	the	can	rolls	more	slowly,	as	seen	in	Figure	10.18.	Figure	10.18	Three	cans	of	soup	with	identical	masses	race	down	an	incline.	The	first	can	has	a	low	friction	coating	and	does	not	roll	but	just	slides	down	the	incline.	It	wins	because	it	converts	its	entire	PE	into	translational	KE.	The	second	and	third	cans
both	roll	down	the	incline	without	slipping.	The	second	can	contains	thin	soup	and	comes	in	second	because	part	of	its	initial	PE	goes	into	rotating	the	can	(but	not	the	thin	soup).	The	third	can	contains	thick	soup.	It	comes	in	third	because	the	soup	rotates	along	with	the	can,	taking	even	more	of	the	initial	PE	for	rotational	KE,	leaving	less	for
translational	KE.	Assuming	no	losses	due	to	friction,	there	is	only	one	force	doing	work—gravity.	Therefore	the	total	work	done	is	the	change	in	kinetic	energy.	As	the	cans	start	moving,	the	potential	energy	is	changing	into	kinetic	energy.	Conservation	of	energy	givesMore	specifically,	PE	grav	=	KE	trans	+	KE	rot	PE	grav	=	KE	trans	+	KE	rot	10.83
or	mgh=12mv2+12Iω2.mgh=12mv2+12Iω2.	10.84	So,	the	initial	mghmgh	is	divided	between	translational	kinetic	energy	and	rotational	kinetic	energy;	and	the	greater	II	is,	the	less	energy	goes	into	translation.	If	the	can	slides	down	without	friction,	then	ω=0ω=0	and	all	the	energy	goes	into	translation;	thus,	the	can	goes	faster.	Locate	several	cans
each	containing	different	types	of	food.	First,	predict	which	can	will	win	the	race	down	an	inclined	plane	and	explain	why.	See	if	your	prediction	is	correct.	You	could	also	do	this	experiment	by	collecting	several	empty	cylindrical	containers	of	the	same	size	and	filling	them	with	different	materials	such	as	wet	or	dry	sand.	Calculate	the	final	speed	of	a
solid	cylinder	that	rolls	down	a	2.00-m-high	incline.	The	cylinder	starts	from	rest,	has	a	mass	of	0.750	kg,	and	has	a	radius	of	4.00	cm.Strategy	We	can	solve	for	the	final	velocity	using	conservation	of	energy,	but	we	must	first	express	rotational	quantities	in	terms	of	translational	quantities	to	end	up	with	vv	as	the	only	unknown.Solution	Conservation
of	energy	for	this	situation	is	written	as	described	above:	mgh	=	1	2	mv	2	+	1	2	Iω	2	.	mgh	=	1	2	mv	2	+	1	2	Iω	2	.	Before	we	can	solve	for	vv	,	we	must	get	an	expression	for	II	from	Figure	10.11.	Because	vv	and	ωω	are	related	(note	here	that	the	cylinder	is	rolling	without	slipping),	we	must	also	substitute	the	relationship	ω=v/Rω=v/R	into	the
expression.	These	substitutions	yieldmgh=12mv2+1212mR2v2R2.mgh=12mv2+1212mR2v2R2.	Interestingly,	the	cylinder’s	radius	RR	and	mass	mm	cancel,	yieldinggh=12v2+14v2=34v2.gh=12v2+14v2=34v2.	Solving	algebraically,	the	equation	for	the	final	velocity	v	v	givesv=4gh31/2.v=4gh31/2.	Substituting	known	values	into	the	resulting
expression	yields	v=49.80	m/s22.00	m31/2=5.11	m/s.v=49.80	m/s22.00	m31/2=5.11	m/s.	Discussion	Because	mm	and	RR	cancel,	the	result	v=43gh1/2v=43gh1/2	is	valid	for	any	solid	cylinder,	implying	that	all	solid	cylinders	will	roll	down	an	incline	at	the	same	rate	independent	of	their	masses	and	sizes.	(Rolling	cylinders	down	inclines	is	what
Galileo	actually	did	to	show	that	objects	fall	at	the	same	rate	independent	of	mass.)	Note	that	if	the	cylinder	slid	without	friction	down	the	incline	without	rolling,	then	the	entire	gravitational	potential	energy	would	go	into	translational	kinetic	energy.	Thus,	12mv2=mgh12mv2=mgh	and	v=(2gh)1/2v=(2gh)1/2,	which	is	22%	greater	than
(4gh/3)1/2(4gh/3)1/2.	That	is,	the	cylinder	would	go	faster	at	the	bottom.	Analogy	of	Rotational	and	Translational	Kinetic	EnergyIs	rotational	kinetic	energy	completely	analogous	to	translational	kinetic	energy?	What,	if	any,	are	their	differences?	Give	an	example	of	each	type	of	kinetic	energy.	Yes,	rotational	and	translational	kinetic	energy	are	exact
analogs.	They	both	are	the	energy	of	motion	involved	with	the	coordinated	(non-random)	movement	of	mass	relative	to	some	reference	frame.	The	only	difference	between	rotational	and	translational	kinetic	energy	is	that	translational	is	straight	line	motion	while	rotational	is	not.	An	example	of	both	kinetic	and	translational	kinetic	energy	is	found	in	a
bike	tire	while	being	ridden	down	a	bike	path.	The	rotational	motion	of	the	tire	means	it	has	rotational	kinetic	energy	while	the	movement	of	the	bike	along	the	path	means	the	tire	also	has	translational	kinetic	energy.	If	you	were	to	lift	the	front	wheel	of	the	bike	and	spin	it	while	the	bike	is	stationary,	then	the	wheel	would	have	only	rotational	kinetic
energy	relative	to	the	Earth.	By	the	end	of	this	section,	you	will	be	able	to:	Use	the	work-energy	theorem	to	analyze	rotation	to	find	the	work	done	on	a	system	when	it	is	rotated	about	a	fixed	axis	for	a	finite	angular	displacement	Solve	for	the	angular	velocity	of	a	rotating	rigid	body	using	the	work-energy	theorem	Find	the	power	delivered	to	a
rotating	rigid	body	given	the	applied	torque	and	angular	velocity	Summarize	the	rotational	variables	and	equations	and	relate	them	to	their	translational	counterparts	Thus	far	in	the	chapter,	we	have	extensively	addressed	kinematics	and	dynamics	for	rotating	rigid	bodies	around	a	fixed	axis.	In	this	final	section,	we	define	work	and	power	within	the
context	of	rotation	about	a	fixed	axis,	which	has	applications	to	both	physics	and	engineering.	The	discussion	of	work	and	power	makes	our	treatment	of	rotational	motion	almost	complete,	with	the	exception	of	rolling	motion	and	angular	momentum,	which	are	discussed	in	Angular	Momentum.	We	begin	this	section	with	a	treatment	of	the	work-
energy	theorem	for	rotation.	Now	that	we	have	determined	how	to	calculate	kinetic	energy	for	rotating	rigid	bodies,	we	can	proceed	with	a	discussion	of	the	work	done	on	a	rigid	body	rotating	about	a	fixed	axis.	Figure	shows	a	rigid	body	that	has	rotated	through	an	angle	[latex]d\theta[/latex]	from	A	to	B	while	under	the	influence	of	a	force
[latex]\mathbf{\overset{\to	}{F}}[/latex].	The	external	force	[latex]\mathbf{\overset{\to	}{F}}[/latex]	is	applied	to	point	P,	whose	position	is	[latex]\mathbf{\overset{\to	}{r}}[/latex],	and	the	rigid	body	is	constrained	to	rotate	about	a	fixed	axis	that	is	perpendicular	to	the	page	and	passes	through	O.	The	rotational	axis	is	fixed,	so	the	vector
[latex]\mathbf{\overset{\to	}{r}}[/latex]	moves	in	a	circle	of	radius	r,	and	the	vector	[latex]d\mathbf{\overset{\to	}{s}}[/latex]	is	perpendicular	to	[latex]\mathbf{\overset{\to	}{r}}.[/latex]	Figure	10.39	A	rigid	body	rotates	through	an	angle	[latex]d\theta[/latex]	from	A	to	B	by	the	action	of	an	external	force	[latex]\mathbf{\overset{\to	}{F}}[/latex]
applied	to	point	P.	From	Figure,	we	have	[latex]\mathbf{\overset{\to	}{s}}=\mathbf{\overset{\to	}{\theta	}}\times	\mathbf{\overset{\to	}{r}}.[/latex]	Thus,	[latex]d\mathbf{\overset{\to	}{s}}=d(\mathbf{\overset{\to	}{\theta	}}\times	\mathbf{\overset{\to	}{r}})=d\mathbf{\overset{\to	}{\theta	}}\times	\mathbf{\overset{\to	}
{r}}+d\mathbf{\overset{\to	}{r}}\times	\mathbf{\overset{\to	}{\theta	}}=d\mathbf{\overset{\to	}{\theta	}}\times	\mathbf{\overset{\to	}{r}}.[/latex]	Note	that	[latex]d\mathbf{\overset{\to	}{r}}[/latex]	is	zero	because	[latex]\mathbf{\overset{\to	}{r}}[/latex]	is	fixed	on	the	rigid	body	from	the	origin	O	to	point	P.	Using	the	definition	of	work,	we
obtain	[latex]W=\int	\sum	\mathbf{\overset{\to	}{F}}\cdot	d\mathbf{\overset{\to	}{s}}=\int	\sum	\mathbf{\overset{\to	}{F}}\cdot	(d\mathbf{\overset{\to	}{\theta	}}\times	\mathbf{\overset{\to	}{r}})=\int	d\mathbf{\overset{\to	}{\theta	}}\cdot	(\mathbf{\overset{\to	}{r}}\times	\sum	\mathbf{\overset{\to	}{F}})[/latex]	where	we	used	the	identity
[latex]\mathbf{\overset{\to	}{a}}\cdot	(\mathbf{\overset{\to	}{b}}\times	\mathbf{\overset{\to	}{c}})=\mathbf{\overset{\to	}{b}}\cdot	(\mathbf{\overset{\to	}{c}}\times	\mathbf{\overset{\to	}{a}})[/latex].	Noting	that	[latex](\mathbf{\overset{\to	}{r}}\times	\sum	\mathbf{\overset{\to	}{F}})=\sum	\mathbf{\overset{\to	}{\tau	}}[/latex],	we
arrive	at	the	expression	for	the	rotational	work	done	on	a	rigid	body:	[latex]W=\int	\sum	\mathbf{\overset{\to	}{\tau	}}\cdot	d\mathbf{\overset{\to	}{\theta	}}.[/latex]	The	total	work	done	on	a	rigid	body	is	the	sum	of	the	torques	integrated	over	the	angle	through	which	the	body	rotates.	The	incremental	work	is	[latex]dW=(\sum	_{i}{\tau
}_{i})d\theta[/latex]	where	we	have	taken	the	dot	product	in	Figure,	leaving	only	torques	along	the	axis	of	rotation.	In	a	rigid	body,	all	particles	rotate	through	the	same	angle;	thus	the	work	of	every	external	force	is	equal	to	the	torque	times	the	common	incremental	angle	[latex]d\theta[/latex].	The	quantity	[latex](\sum	_{i}{\tau	}_{i})[/latex]	is	the
net	torque	on	the	body	due	to	external	forces.	Similarly,	we	found	the	kinetic	energy	of	a	rigid	body	rotating	around	a	fixed	axis	by	summing	the	kinetic	energy	of	each	particle	that	makes	up	the	rigid	body.	Since	the	work-energy	theorem	[latex]{W}_{i}=\Delta	{K}_{i}[/latex]	is	valid	for	each	particle,	it	is	valid	for	the	sum	of	the	particles	and	the
entire	body.	The	work-energy	theorem	for	a	rigid	body	rotating	around	a	fixed	axis	is	[latex]{W}_{AB}={K}_{B}-{K}_{A}[/latex]	where	[latex]K=\frac{1}{2}I{\omega	}^{2}[/latex]	and	the	rotational	work	done	by	a	net	force	rotating	a	body	from	point	A	to	point	B	is	[latex]{W}_{AB}=\underset{{\theta	}_{A}}{\overset{{\theta	}_{B}}{\int	}}(\sum
_{i}{\tau	}_{i})d\theta	.[/latex]	We	give	a	strategy	for	using	this	equation	when	analyzing	rotational	motion.	Problem-Solving	Strategy:	Work-Energy	Theorem	for	Rotational	Motion	Identify	the	forces	on	the	body	and	draw	a	free-body	diagram.	Calculate	the	torque	for	each	force.	Calculate	the	work	done	during	the	body’s	rotation	by	every	torque.
Apply	the	work-energy	theorem	by	equating	the	net	work	done	on	the	body	to	the	change	in	rotational	kinetic	energy.	Let’s	look	at	two	examples	and	use	the	work-energy	theorem	to	analyze	rotational	motion.	A	[latex]12.0\,\text{N}\cdot	\text{m}[/latex]	torque	is	applied	to	a	flywheel	that	rotates	about	a	fixed	axis	and	has	a	moment	of	inertia	of
[latex]30.0\,\text{kg}\cdot	{\text{m}}^{2}[/latex].	If	the	flywheel	is	initially	at	rest,	what	is	its	angular	velocity	after	it	has	turned	through	eight	revolutions?	Strategy	We	apply	the	work-energy	theorem.	We	know	from	the	problem	description	what	the	torque	is	and	the	angular	displacement	of	the	flywheel.	Then	we	can	solve	for	the	final	angular
velocity.	Solution	The	flywheel	turns	through	eight	revolutions,	which	is	[latex]16\pi[/latex]	radians.	The	work	done	by	the	torque,	which	is	constant	and	therefore	can	come	outside	the	integral	in	Figure,	is	[latex]{W}_{AB}=\tau	({\theta	}_{B}-{\theta	}_{A}).[/latex]	We	apply	the	work-energy	theorem:	[latex]{W}_{AB}=\tau	({\theta	}_{B}-{\theta
}_{A})=\frac{1}{2}I{\omega	}_{B}^{2}-\frac{1}{2}I{\omega	}_{A}^{2}.[/latex]	With	[latex]\tau	=12.0\,\text{N}\cdot	\text{m},{\theta	}_{B}-{\theta	}_{A}=16.0\pi	\,\text{rad},\,I=30.0\,\text{kg}\cdot	{\text{m}}^{2},\,\text{and}\,{\omega	}_{A}=0[/latex],	we	have	[latex]12.0\,\text{N-m}(16.0\pi	\,\text{rad})=\frac{1}{2}(30.0\,\text{kg}\cdot
{\text{m}}^{2})({\omega	}_{B}^{2})-0.[/latex]	Therefore,	[latex]{\omega	}_{B}=6.3\,\text{rad}\text{/}\text{s}.[/latex]	This	is	the	angular	velocity	of	the	flywheel	after	eight	revolutions.	Significance	The	work-energy	theorem	provides	an	efficient	way	to	analyze	rotational	motion,	connecting	torque	with	rotational	kinetic	energy.	A	string	wrapped
around	the	pulley	in	Figure	is	pulled	with	a	constant	downward	force	[latex]\mathbf{\overset{\to	}{F}}[/latex]	of	magnitude	50	N.	The	radius	R	and	moment	of	inertia	I	of	the	pulley	are	0.10	m	and	[latex]2.5\times	{10}^{-3}{\text{kg-m}}^{2}[/latex],	respectively.	If	the	string	does	not	slip,	what	is	the	angular	velocity	of	the	pulley	after	1.0	m	of
string	has	unwound?	Assume	the	pulley	starts	from	rest.	Figure	10.40	(a)	A	string	is	wrapped	around	a	pulley	of	radius	R.	(b)	The	free-body	diagram.	Strategy	Looking	at	the	free-body	diagram,	we	see	that	neither	[latex]\mathbf{\overset{\to	}{B}}[/latex],	the	force	on	the	bearings	of	the	pulley,	nor[latex]M\mathbf{\overset{\to	}{g}}[/latex],	the
weight	of	the	pulley,	exerts	a	torque	around	the	rotational	axis,	and	therefore	does	no	work	on	the	pulley.	As	the	pulley	rotates	through	an	angle	[latex]\theta	,[/latex]	[latex]\mathbf{\overset{\to	}{F}}[/latex]	acts	through	a	distance	d	such	that	[latex]d=R\theta	.[/latex]	Solution	Since	the	torque	due	to	[latex]\mathbf{\overset{\to	}{F}}[/latex]	has
magnitude	[latex]\tau	=RF[/latex],	we	have	[latex]W=\tau	\theta	=(FR)\theta	=Fd.[/latex]	If	the	force	on	the	string	acts	through	a	distance	of	1.0	m,	we	have,	from	the	work-energy	theorem,	[latex]\begin{array}{ccc}\hfill	{W}_{AB}&	=\hfill	&	{K}_{B}-{K}_{A}\hfill	\\	\hfill	Fd&	=\hfill	&	\frac{1}{2}I{\omega	}^{2}-0\hfill	\\	\hfill	(50.0\,\text{N})
(1.0\,\text{m})&	=\hfill	&	\frac{1}{2}(2.5\times	{10}^{-3}{\text{kg-m}}^{2}){\omega	}^{2}.\hfill	\end{array}[/latex]	Solving	for	[latex]\omega[/latex],	we	obtain	[latex]\omega	=200.0\,\text{rad}\text{/}\text{s}.[/latex]	Power	always	comes	up	in	the	discussion	of	applications	in	engineering	and	physics.	Power	for	rotational	motion	is	equally	as
important	as	power	in	linear	motion	and	can	be	derived	in	a	similar	way	as	in	linear	motion	when	the	force	is	a	constant.	The	linear	power	when	the	force	is	a	constant	is	[latex]P=\mathbf{\overset{\to	}{F}}\cdot	\mathbf{\overset{\to	}{v}}[/latex].	If	the	net	torque	is	constant	over	the	angular	displacement,	Figure	simplifies	and	the	net	torque	can	be
taken	out	of	the	integral.	In	the	following	discussion,	we	assume	the	net	torque	is	constant.	We	can	apply	the	definition	of	power	derived	in	Power	to	rotational	motion.	From	Work	and	Kinetic	Energy,	the	instantaneous	power	(or	just	power)	is	defined	as	the	rate	of	doing	work,	[latex]P=\frac{dW}{dt}.[/latex]	If	we	have	a	constant	net	torque,	Figure



becomes	[latex]W=\tau	\theta[/latex]	and	the	power	is	[latex]P=\frac{dW}{dt}=\frac{d}{dt}(\tau	\theta	)=\tau	\frac{d\theta	}{dt}[/latex]	or	[latex]P=\tau	\omega	.[/latex]	A	boat	engine	operating	at	[latex]9.0\times	{10}^{4}\,\text{W}[/latex]	is	running	at	300	rev/min.	What	is	the	torque	on	the	propeller	shaft?	Strategy	We	are	given	the	rotation	rate
in	rev/min	and	the	power	consumption,	so	we	can	easily	calculate	the	torque.	Solution	[latex]300.0\,\text{rev/min}=31.4\,\text{rad/s;}[/latex]	[latex]\tau	=\frac{P}{\omega	}=\frac{9.0\times	{10}^{4}\text{N}\cdot	\text{m}\text{/}\text{s}}{31.4\,\text{rad}\text{/}\text{s}}=2864.8\,\text{N}\cdot	\text{m}.[/latex]	It	is	important	to	note	the	radian	is
a	dimensionless	unit	because	its	definition	is	the	ratio	of	two	lengths.	It	therefore	does	not	appear	in	the	solution.	A	constant	torque	of	[latex]500\,\text{kN}\cdot	\text{m}[/latex]	is	applied	to	a	wind	turbine	to	keep	it	rotating	at	6	rad/s.	What	is	the	power	required	to	keep	the	turbine	rotating?	Show	Solution	3	MW	The	rotational	quantities	and	their
linear	analog	are	summarized	in	three	tables.	Figure	summarizes	the	rotational	variables	for	circular	motion	about	a	fixed	axis	with	their	linear	analogs	and	the	connecting	equation,	except	for	the	centripetal	acceleration,	which	stands	by	itself.	Figure	summarizes	the	rotational	and	translational	kinematic	equations.	Figure	summarizes	the	rotational
dynamics	equations	with	their	linear	analogs.	Rotational	and	Translational	Variables:	Summary	Rotational	Translational	Relationship	[latex]\theta[/latex]	[latex]x[/latex]	[latex]\theta	=\frac{s}{r}[/latex]	[latex]\omega[/latex]	[latex]{v}_{t}[/latex]	[latex]\omega	=\frac{{v}_{t}}{r}[/latex]	[latex]\alpha[/latex]	[latex]{a}_{\text{t}}[/latex]	[latex]\alpha
=\frac{{a}_{\text{t}}}{r}[/latex]	[latex]{a}_{\text{c}}[/latex]	[latex]{a}_{\text{c}}=\frac{{v}_{\text{t}}^{2}}{r}[/latex]	Rotational	and	Translational	Kinematic	Equations:	Summary	Rotational	Translational	[latex]{\theta	}_{\text{f}}={\theta	}_{0}+\overset{–}{\omega	}t[/latex]	[latex]x={x}_{0}+\overset{–}{v}t[/latex]	[latex]{\omega
}_{\text{f}}={\omega	}_{0}+\alpha	t[/latex]	[latex]{v}_{\text{f}}={v}_{0}+at[/latex]	[latex]{\theta	}_{\text{f}}={\theta	}_{0}+{\omega	}_{0}t+\frac{1}{2}\alpha	{t}^{2}[/latex]	[latex]{x}_{\text{f}}={x}_{0}+{v}_{0}t+\frac{1}{2}a{t}^{2}[/latex]	[latex]{\omega	}_{\text{f}}^{2}={\omega	}^{2}{}_{0}+2\alpha	(\Delta	\theta	)[/latex]
[latex]{v}_{\text{f}}^{2}={v}^{2}{}_{0}+2a(\Delta	x)[/latex]	Rotational	and	Translational	Equations:	Dynamics	Rotational	Translational	[latex]I=\sum	_{i}{m}_{i}{r}_{i}^{2}[/latex]	m	[latex]K=\frac{1}{2}I{\omega	}^{2}[/latex]	[latex]K=\frac{1}{2}m{v}^{2}[/latex]	[latex]\sum	_{i}{\tau	}_{i}=I\alpha[/latex]	[latex]\sum	_{i}
{\mathbf{\overset{\to	}{F}}}_{i}=m\mathbf{\overset{\to	}{a}}[/latex]	[latex]{W}_{AB}=\underset{{\theta	}_{A}}{\overset{{\theta	}_{B}}{\int	}}(\sum	_{i}{\tau	}_{i})d\theta[/latex]	[latex]W=\int	\mathbf{\overset{\to	}{F}}\cdot	d\mathbf{\overset{\to	}{s}}[/latex]	[latex]P=\tau	\omega[/latex]	[latex]P=\mathbf{\overset{\to	}{F}}\cdot
\mathbf{\overset{\to	}{v}}[/latex]	A	wind	turbine	rotates	at	20	rev/min.	If	its	power	output	is	2.0	MW,	what	is	the	torque	produced	on	the	turbine	from	the	wind?	Show	Solution	[latex]\tau	=\frac{P}{\omega	}=\frac{2.0\times	{10}^{6}\text{W}}{2.1\,\text{rad}\text{/}\text{s}}=9.5\times	{10}^{5}\text{N}\cdot	\text{m}[/latex]	A	clay	cylinder	of
radius	20	cm	on	a	potter’s	wheel	spins	at	a	constant	rate	of	10	rev/s.	The	potter	applies	a	force	of	10	N	to	the	clay	with	his	hands	where	the	coefficient	of	friction	is	0.1	between	his	hands	and	the	clay.	What	is	the	power	that	the	potter	has	to	deliver	to	the	wheel	to	keep	it	rotating	at	this	constant	rate?	A	uniform	cylindrical	grindstone	has	a	mass	of	10
kg	and	a	radius	of	12	cm.	(a)	What	is	the	rotational	kinetic	energy	of	the	grindstone	when	it	is	rotating	at	[latex]1.5\times	{10}^{3}\text{rev}\text{/}\text{min}?[/latex]	(b)	After	the	grindstone’s	motor	is	turned	off,	a	knife	blade	is	pressed	against	the	outer	edge	of	the	grindstone	with	a	perpendicular	force	of	5.0	N.	The	coefficient	of	kinetic	friction
between	the	grindstone	and	the	blade	is	0.80.	Use	the	work	energy	theorem	to	determine	how	many	turns	the	grindstone	makes	before	it	stops.	Show	Solution	a.	[latex]K=888.50\,\text{J}[/latex];	b.	[latex]\Delta	\theta	=294.6\,\text{rev}[/latex]	A	uniform	disk	of	mass	500	kg	and	radius	0.25	m	is	mounted	on	frictionless	bearings	so	it	can	rotate	freely
around	a	vertical	axis	through	its	center	(see	the	following	figure).	A	cord	is	wrapped	around	the	rim	of	the	disk	and	pulled	with	a	force	of	10	N.	(a)	How	much	work	has	the	force	done	at	the	instant	the	disk	has	completed	three	revolutions,	starting	from	rest?	(b)	Determine	the	torque	due	to	the	force,	then	calculate	the	work	done	by	this	torque	at	the
instant	the	disk	has	completed	three	revolutions?	(c)	What	is	the	angular	velocity	at	that	instant?	(d)	What	is	the	power	output	of	the	force	at	that	instant?	A	propeller	is	accelerated	from	rest	to	an	angular	velocity	of	1000	rev/min	over	a	period	of	6.0	seconds	by	a	constant	torque	of	[latex]2.0\times	{10}^{3}\text{N}\cdot	\text{m}[/latex].	(a)	What	is
the	moment	of	inertia	of	the	propeller?	(b)	What	power	is	being	provided	to	the	propeller	3.0	s	after	it	starts	rotating?	Show	Solution	a.	[latex]I=114.6\,\text{kg}\cdot	{\text{m}}^{2}[/latex];	b.	[latex]P=104,700\,\text{W}[/latex]	A	sphere	of	mass	1.0	kg	and	radius	0.5	m	is	attached	to	the	end	of	a	massless	rod	of	length	3.0	m.	The	rod	rotates	about
an	axis	that	is	at	the	opposite	end	of	the	sphere	(see	below).	The	system	rotates	horizontally	about	the	axis	at	a	constant	400	rev/min.	After	rotating	at	this	angular	speed	in	a	vacuum,	air	resistance	is	introduced	and	provides	a	force	[latex]0.15\,\text{N}[/latex]	on	the	sphere	opposite	to	the	direction	of	motion.	What	is	the	power	provided	by	air
resistance	to	the	system	100.0	s	after	air	resistance	is	introduced?	A	uniform	rod	of	length	L	and	mass	M	is	held	vertically	with	one	end	resting	on	the	floor	as	shown	below.	When	the	rod	is	released,	it	rotates	around	its	lower	end	until	it	hits	the	floor.	Assuming	the	lower	end	of	the	rod	does	not	slip,	what	is	the	linear	velocity	of	the	upper	end	when	it
hits	the	floor?	Show	Answer	[latex]v=L\omega	=\sqrt{3Lg}[/latex]	An	athlete	in	a	gym	applies	a	constant	force	of	50	N	to	the	pedals	of	a	bicycle	to	keep	the	rotation	rate	of	the	wheel	at	10	rev/s.	The	length	of	the	pedal	arms	is	30	cm.	What	is	the	power	delivered	to	the	bicycle	by	the	athlete?	A	2-kg	block	on	a	frictionless	inclined	plane	at
[latex]40^\circ[/latex]	has	a	cord	attached	to	a	pulley	of	mass	1	kg	and	radius	20	cm	(see	the	following	figure).	(a)	What	is	the	acceleration	of	the	block	down	the	plane?	(b)	What	is	the	work	done	by	the	gravitational	force	to	move	the	block	50	cm?	Show	Answer	a.	[latex]a=5.0\,\text{m}\text{/}{\text{s}}^{2}[/latex];	b.	[latex]W=1.25\,\text{N}\cdot
\text{m}[/latex]	Small	bodies	of	mass	[latex]{m}_{1}\,\text{and}\,{m}_{2}[/latex]	are	attached	to	opposite	ends	of	a	thin	rigid	rod	of	length	L	and	mass	M.	The	rod	is	mounted	so	that	it	is	free	to	rotate	in	a	horizontal	plane	around	a	vertical	axis	(see	below).	What	distance	d	from	[latex]{m}_{1}[/latex]	should	the	rotational	axis	be	so	that	a	minimum
amount	of	work	is	required	to	set	the	rod	rotating	at	an	angular	velocity	[latex]\omega	?[/latex]	A	cyclist	is	riding	such	that	the	wheels	of	the	bicycle	have	a	rotation	rate	of	3.0	rev/s.	If	the	cyclist	brakes	such	that	the	rotation	rate	of	the	wheels	decrease	at	a	rate	of	[latex]0.3\,\text{rev}\text{/}{\text{s}}^{2}[/latex],	how	long	does	it	take	for	the	cyclist
to	come	to	a	complete	stop?	Show	Solution	[latex]\Delta	t=10.0\,\text{s}[/latex]	Calculate	the	angular	velocity	of	the	orbital	motion	of	Earth	around	the	Sun.	A	phonograph	turntable	rotating	at	33	1/3	rev/min	slows	down	and	stops	in	1.0	min.	(a)	What	is	the	turntable’s	angular	acceleration	assuming	it	is	constant?	(b)	How	many	revolutions	does	the
turntable	make	while	stopping?	Show	Solution	a.	[latex]0.06\,\text{rad}\text{/}{\text{s}}^{2}[/latex];	b.	[latex]\theta	=105.0\,\text{rad}[/latex]	With	the	aid	of	a	string,	a	gyroscope	is	accelerated	from	rest	to	32	rad/s	in	0.40	s	under	a	constant	angular	acceleration.	(a)	What	is	its	angular	acceleration	in	[latex]{\text{rad/s}}^{2}[/latex]?	(b)	How
many	revolutions	does	it	go	through	in	the	process?	Suppose	a	piece	of	dust	has	fallen	on	a	CD.	If	the	spin	rate	of	the	CD	is	500	rpm,	and	the	piece	of	dust	is	4.3	cm	from	the	center,	what	is	the	total	distance	traveled	by	the	dust	in	3	minutes?	(Ignore	accelerations	due	to	getting	the	CD	rotating.)	Show	Solution	[latex]s=405.26\,\text{m}[/latex]	A
system	of	point	particles	is	rotating	about	a	fixed	axis	at	4	rev/s.	The	particles	are	fixed	with	respect	to	each	other.	The	masses	and	distances	to	the	axis	of	the	point	particles	are	[latex]{m}_{1}=0.1\,\text{kg},{r}_{1}=0.2\,\text{m}[/latex],	[latex]{m}_{2}=0.05\,\text{kg},{r}_{2}=0.4\,\text{m}[/latex],	[latex]{m}_{3}=0.5\,\text{kg},
{r}_{3}=0.01\,\text{m}[/latex].	(a)	What	is	the	moment	of	inertia	of	the	system?	(b)	What	is	the	rotational	kinetic	energy	of	the	system?	Calculate	the	moment	of	inertia	of	a	skater	given	the	following	information.	(a)	The	60.0-kg	skater	is	approximated	as	a	cylinder	that	has	a	0.110-m	radius.	(b)	The	skater	with	arms	extended	is	approximated	by	a
cylinder	that	is	52.5	kg,	has	a	0.110-m	radius,	and	has	two	0.900-m-long	arms	which	are	3.75	kg	each	and	extend	straight	out	from	the	cylinder	like	rods	rotated	about	their	ends.	Show	Solution	a.	[latex]I=0.363\,\text{kg}\cdot	{\text{m}}^{2}[/latex];	b.	[latex]I=2.34\,\text{kg}\cdot	{\text{m}}^{2}[/latex]	A	stick	of	length	1.0	m	and	mass	6.0	kg	is
free	to	rotate	about	a	horizontal	axis	through	the	center.	Small	bodies	of	masses	4.0	and	2.0	kg	are	attached	to	its	two	ends	(see	the	following	figure).	The	stick	is	released	from	the	horizontal	position.	What	is	the	angular	velocity	of	the	stick	when	it	swings	through	the	vertical?	A	pendulum	consists	of	a	rod	of	length	2	m	and	mass	3	kg	with	a	solid
sphere	of	mass	1	kg	and	radius	0.3	m	attached	at	one	end.	The	axis	of	rotation	is	as	shown	below.	What	is	the	angular	velocity	of	the	pendulum	at	its	lowest	point	if	it	is	released	from	rest	at	an	angle	of	[latex]30^\circ?[/latex]	Show	Answer	[latex]\omega	=\sqrt{\frac{5.36\,\text{J}}{4.4\,{\text{kgm}}^{2}}}=1.10\,\text{rad}\text{/}\text{s}[/latex]
Calculate	the	torque	of	the	40-N	force	around	the	axis	through	O	and	perpendicular	to	the	plane	of	the	page	as	shown	below.	Two	children	push	on	opposite	sides	of	a	door	during	play.	Both	push	horizontally	and	perpendicular	to	the	door.	One	child	pushes	with	a	force	of	17.5	N	at	a	distance	of	0.600	m	from	the	hinges,	and	the	second	child	pushes	at
a	distance	of	0.450	m.	What	force	must	the	second	child	exert	to	keep	the	door	from	moving?	Assume	friction	is	negligible.	Show	Solution	[latex]F=23.3\,\text{N}[/latex]	The	force	of	[latex]20\mathbf{\hat{j}}\text{N}[/latex]	is	applied	at	[latex]\mathbf{\overset{\to	}{r}}=(4.0\mathbf{\hat{i}}-2.0\mathbf{\hat{j}})\,\text{m}[/latex].	What	is	the
torque	of	this	force	about	the	origin?	An	automobile	engine	can	produce	200	N[latex]\cdot[/latex]	m	of	torque.	Calculate	the	angular	acceleration	produced	if	95.0%	of	this	torque	is	applied	to	the	drive	shaft,	axle,	and	rear	wheels	of	a	car,	given	the	following	information.	The	car	is	suspended	so	that	the	wheels	can	turn	freely.	Each	wheel	acts	like	a
15.0-kg	disk	that	has	a	0.180-m	radius.	The	walls	of	each	tire	act	like	a	2.00-kg	annular	ring	that	has	inside	radius	of	0.180	m	and	outside	radius	of	0.320	m.	The	tread	of	each	tire	acts	like	a	10.0-kg	hoop	of	radius	0.330	m.	The	14.0-kg	axle	acts	like	a	rod	that	has	a	2.00-cm	radius.	The	30.0-kg	drive	shaft	acts	like	a	rod	that	has	a	3.20-cm	radius.	Show
Solution	[latex]\alpha	=\frac{190.0\,\text{N-m}}{2.94\,{\text{kg-m}}^{2}}=64.4\,{\text{rad}\text{/}\text{s}}^{2}[/latex]	A	grindstone	with	a	mass	of	50	kg	and	radius	0.8	m	maintains	a	constant	rotation	rate	of	4.0	rev/s	by	a	motor	while	a	knife	is	pressed	against	the	edge	with	a	force	of	5.0	N.	The	coefficient	of	kinetic	friction	between	the
grindstone	and	the	blade	is	0.8.	What	is	the	power	provided	by	the	motor	to	keep	the	grindstone	at	the	constant	rotation	rate?	The	angular	acceleration	of	a	rotating	rigid	body	is	given	by	[latex]\alpha	=(2.0-3.0t)\,\text{rad}\text{/}{\text{s}}^{2}[/latex].	If	the	body	starts	rotating	from	rest	at	[latex]t=0[/latex],	(a)	what	is	the	angular	velocity?	(b)
Angular	position?	(c)	What	angle	does	it	rotate	through	in	10	s?	(d)	Where	does	the	vector	perpendicular	to	the	axis	of	rotation	indicating	[latex]0^\circ[/latex]	at	[latex]t=0[/latex]	lie	at	[latex]t=10\,\text{s}[/latex]?	Show	Solution	a.	[latex]\omega	=2.0t-1.5{t}^{2}[/latex];	b.	[latex]\theta	={t}^{2}-0.5{t}^{3}[/latex];	c.	[latex]\theta
=-400.0\,\text{rad}[/latex];	d.	the	vector	is	at	[latex]-0.66(360^\circ)=-237.6^\circ[/latex]	Earth’s	day	has	increased	by	0.002	s	in	the	last	century.	If	this	increase	in	Earth’s	period	is	constant,	how	long	will	it	take	for	Earth	to	come	to	rest?	A	disk	of	mass	m,	radius	R,	and	area	A	has	a	surface	mass	density	[latex]\sigma	=\frac{mr}{AR}[/latex]	(see	the
following	figure).	What	is	the	moment	of	inertia	of	the	disk	about	an	axis	through	the	center?	Show	Answer	[latex]I=\frac{2}{5}m{R}^{2}[/latex]	Zorch,	an	archenemy	of	Rotation	Man,	decides	to	slow	Earth’s	rotation	to	once	per	28.0	h	by	exerting	an	opposing	force	at	and	parallel	to	the	equator.	Rotation	Man	is	not	immediately	concerned,	because
he	knows	Zorch	can	only	exert	a	force	of	[latex]4.00\times	1{0}^{7}\text{N}[/latex]	(a	little	greater	than	a	Saturn	V	rocket’s	thrust).	How	long	must	Zorch	push	with	this	force	to	accomplish	his	goal?	(This	period	gives	Rotation	Man	time	to	devote	to	other	villains.)	A	cord	is	wrapped	around	the	rim	of	a	solid	cylinder	of	radius	0.25	m,	and	a	constant
force	of	40	N	is	exerted	on	the	cord	shown,	as	shown	in	the	following	figure.	The	cylinder	is	mounted	on	frictionless	bearings,	and	its	moment	of	inertia	is	[latex]6.0\,\text{kg}\cdot	{\text{m}}^{2}[/latex].	(a)	Use	the	work	energy	theorem	to	calculate	the	angular	velocity	of	the	cylinder	after	5.0	m	of	cord	have	been	removed.	(b)	If	the	40-N	force	is
replaced	by	a	40-N	weight,	what	is	the	angular	velocity	of	the	cylinder	after	5.0	m	of	cord	have	unwound?	Show	Answer	a.	[latex]\omega	=8.2\,\text{rad}\text{/}\text{s}[/latex];	b.	[latex]\omega	=8.0\,\text{rad}\text{/}\text{s}[/latex]


