

Rolling resistance is the resistive force applied to the wheel when its rolling. The magnitude of rolling resistance depends on a series of factors, which most of the time act together and can not be broken down clearly. Most common causes of rolling resistance applied to a wheel in motion are: tire deformation friction between tire and road surface wheel friction with surrounding air friction in the wheel hub and bearings road surface deformation In the following discussion we are going to focus on the rolling resistance caused by the tire and road. The wheel hub and bearings efficiency). Image: Tire pressure distribution stationary vs. rolling In the image above: N [N] normal reaction force, W [N] weight force acting on the wheel. However, when the wheel is in motion (rotating), the normal force distribution is not anymore symmetric but concentrates in the front of the wheel, towards the direction of motion. This makes the resultant force N [N] to create a resistive rolling torque, which will try to slow down the wheel. Go back Formula Image: Rolling resistance wheel forces diagram Lets assume we have a vehicle which has front-wheel drive (FWD). The rear wheels are going to be pulled along, through the chassis. Therefore there will be a pulling force Fp [N] acting in the wheel hub, which will force the wheel to rotate. As explained previously, due to asymmetric force distribution in the contact patch, there is going to be a normal force N [N] acting on the tire, at the distance a [m] from the vertical axis of the tire is exactly the rolling resistance force Frr [N]. Since the wheel is in equilibrium, the sum of forces on the x-axis, the sum of forces on the y-axis forces equilibrium Replacing N from (6) in (8) and solving for Frr [N] gives: The ratio between distance a [m] and wheel radius rw [m] is the rolling resistance coefficient f [-]. Replacing (10) in equation (9) gives the general formula of the rolling resistance force for flat (no gradient) roads. where m [kg] is the vehicle mass and g = 9.81 m/s2 is the gravitational acceleration. If we calculate the rolling resistance of only one wheel, then the gradient [], then the formula for rolling resistance becomes: Frr = f W cos() = f m g cos() Go back Rolling resistance coefficient The rolling resistance coefficient of a tire depends on tire construction, materials, air pressure, vehicle speed, and road conditions. In general, for low vehicle speeds, the value of rolling resistance coefficient is constant. The rolling resistance coefficient slightly increases with the increase of the traveling speed of the vehicle speeds, the value of rolling resistance coefficient slightly increases with the increase of the traveling speed of the vehicle speeds, the value of rolling resistance coefficient slightly increases with the increase of the traveling speed of the vehicle speeds, and road conditions. vehicle speed below 200 kph, the rolling resistance coefficient is between 0.01 0.02. There are several sources of automotive literature, in which you can find the value of the rolling resistance coefficient function on several parameters. For example in [6], you can find the value of the rolling resistance coefficient function of the road type. Road surface Rolling resistance coefficient Pneumatic car tires on large set pavement 0.013 concrete, asphalt 0.011 rolled gravel 0.02 tarmacadam 0.025 unpaved road 0.05 field 0.1 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.02 tarmacadam 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.025 unpaved road 0.05 field 0.10 0.35 Pneumatic truck tires on concrete, asphalt 0.011 rolled gravel 0.012 truck tires on concrete, asphalt 0.012 truck tires on concrete, asphalt 0.013 rolled gravel 0.013 truck tires on concrete, asphalt 0.014 rolled gravel 0.014 rolled gravel 0.015 truck tires on concrete, asphalt 0.015 rolled gravel 0.015 truck tires on concrete, asphalt 0.015 rolled gravel 0.015 rolle 0.002 Table: Coefficients of rolling resistance Source: [6] From [1] we can also extract a table of rolling resistance coefficient new, firm asphalt; concrete; small pavement; cobblestone pavement 0.005 0.015 rolled, firm gravel; wear down, washboard asphalt 0.02 0.03 tarred, wear down, washboard gravel 0.03 0.04 very well dirt roads 0.05 0.15 sand 0.15 0.35 Table: Coefficients of rolling resistance coefficient can be found in [8] for different pavement types at low vehicle speeds. Pavement type Rolling resistance coefficient can be found in [8] for different pavement types at low vehicle speeds. Pavement type Rolling resistance coefficient can be found in [8] for different pavement types at low vehicle speeds. Pavement types at low vehicle speeds. pavement 0.01 0.018 General asphalt or concrete pavement 0.025 0.035 Pressed dirt road 0.120 0.250 Dry sand 0.100 track 0.030 0.050 Table: Rolling resistance coefficient depends on several factors, like: tire construction road source: [8] In reality, the rolling resistance coefficient depends on several factors, like: tire construction road source: resistance coefficient. As the air pressure increases, the rolling resistance coefficient decreases at steady state load. This leads to a decrease of the tire flexing energy and due to the smaller contact patch, to a decline of the frictional component of resistance coefficient function of wheel load and tire pressureCredit: [1] In the next image you can see the influence of vehicle speed on the rolling resistance coefficient, which rises with the vehicle speed is due to the superimposed effect of the tire deformation wave on the flexion resistance. This effect increases with velocity [1]. Image: Rolling resistance coefficient function of driving speedCredit: [1] Go back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit: [1] How back Models for rolling resistance coefficient function of driving speedCredit function of driving speedCredit function of driving speedCredit function functio automotive literature, there are a number of formulas for the rolling resistance coefficient, mainly function of vehicle speed In [9] there are several proposed formulas for the rolling resistance coefficient. \[f (V) = f_{0} + f_{0} \cdot V + f_{0} \cdo [kph] is vehicle speed and f0, f01 and f02 are coefficients function of V [kph], we get the following curve: Image: Rolling resistance coefficients can be adjusted in order to obtain the desired behaviour of the rolling resistance coefficient. For a road made from good asphalt or concrete, a rolling coefficient which varies between 0.01 at 0 kph and 0.025 at 250 kph is good enough for simulations. Go back Models for rolling resistance force Once we have the rolling resistance coefficient function of vehicle speed, we can apply equation (12) and get the rolling resistance force. For example, if we consider that the total mass of the vehicle is 2000 kg and that the weight is evenly distributed on all four wheels, well get a weight on a wheel of: Frr = (2000/4) 9.81 f(V) Applying equation (12) and the rolling resistance coefficient defined by (13), we can plot the rolling resistance force function of vehicle speed. Image: Rolling resistance force function of speed In the SAE standard J2452, the rolling resistance force is defined function of vehicle speed, tire inflation pressure Z [N / lbs] tire load V [kph / mph] vehicle speed, , a, b, c [-] tire dependant coefficients As an example, from [3] we can extract the coefficients for the tire T40 of size $205/75R15\ 97S$: = $1.03399904\ = -0.41081927\ a$ = $0.05933157\ b$ = $9.85526e-05\ c$ = $3.72314e-07\ For$ the same tire load of $4905\ N$ and different inflation pressures of 150, 250 and $350\ kPa$, we can plot the rolling resistance using equation (15): Image: Rolling resistance force function of speed pressure and load Go back Example For a vehicle of mass 1800 kg, travelling on a road with the slope angle of 10 and with a fixed rolling resistance coefficient of 0.012, calculate the total rolling resistance force. Applying equation (12), we get: Frr = 1800 9.81 0.012 cos(10 / 180) = 209 N Go back Calculator Go back References [1] Henning Wallentowitz, Longitudinal Dynamics of Vehicles Lecture, IKA RWTH, Aachen, 2004. [2] Lars Eriksson, Lars Nielsen, Modeling and Control of Engines and Drivelines, Wiley, 2014. [3] Ben Wen, Gregory Rogerson, and Alan Hartke, Correlation Analysis of Rolling Resistance Test Results from SAE J1269 and J2452, SAE International, 2014. [4] Green Seals Report, Low Rolling Resistance Tires, March, 2003. [5] Transportation Research Board Special Report 286, 2006. [6] Automotive Handbook, 9th Edition, Bosch, 2014. [7] Georg Rill, Vehicle Dynamics Lecture Notes, University of Applied Sciences, Regensburg, 2005. [8] Wuwei Chen et al, Integrated Vehicle Dynamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley, 2016. [9] M. Untaru et al, Dinamics and Control, Wiley visitors. Please support us by disabling your Ad blocker for our site. Thank you! NAFEMS Americas and Digital Engineering (DE) teamed up (once again) to present CAASE, the (now Virtual) Conference on Advancing Analysis & Simulation in Engineering, on June 16-18, 2020!CAASE20 brought together the leading visionaries, developers, and practitioners of CAE-related technologies in an open forum, unlike any other, to share experiences, discuss relevant trends, discover common themes, and explore future issues, including:-What is the future for engineering analysis and simulation?-Where will it lead us in the next decade?-How can designers and engineers realize its full potential? What are the business, technological, and human enablers that will take past successful developments to new levels in the next ten years? Resource AbstractVehicle Energy Management (VEM) simulations play key role in prediction of System level energy contribution of each subsystem during any event. Tire-road interaction plays crucial role in driving the actual power consumption of vehicle. This is so, due to dynamic behavior of tire material when each tread gets loaded (comes into contact with ground) and unloaded (loses contact with ground). The rolling resistance between tire-ground also directly affects fuel consumption of vehicle. Slight change in rolling resistance significantly impacts power consumption. Also, this makes virtual simulation deviate a lot from physical world. Thus, calculation of rolling resistance depends on various factors such as load, vehicle velocity and ambient conditions. One of the conventional approaches to estimate the rolling resistance is by trial and error method. This paper proposes a scientific approach for calculation of rolling resistance coefficient for various off-road events. It is clear that the rate of tire tread being loaded and unloaded depends on forward vehicle velocity. Also, vertical weight on the tire directly impacts on the shape and size of contact patch area. Thus, rolling resistance being offered at high load is more. A new methodology has been developed to calculate rolling resistance coefficient for various duty cycles in which vehicle for field and transport events of an off-road vehicle and excellent correlation (around 90%) has been achieved with test data. Standardization of this process is a key milestone towards predicting performance of upcoming off-road machines for various terrains and vehicle system level parameters. This study is a step towards modeling real time vehicle dynamic phenomenon accurately and making sound design decisions based upon results achieved. Further scope of this study is to optimize hydraulic subsystems based upon subsystems level performance improvement at vehicle level significantly. With this method, huge cost involved in testing and efforts will be minimized with added advantage of reusability and modular architecture. Evaluation of various technological advances at subsystem level can be appropriately compared with available options using vehicle energy management thought process. Also, optimization objectives such as better gradeability, improved traction, reduced fuel consumption and emissions can be achieved with this methodology. The force that resists the motion of a body rolling on a surface is called the rolling friction. The rolling friction (N, lbf)c = rolling friction (N, lbf)c = rolling friction of a body rolling weight - of the body (N, lbf)m = mass of body (kg, lb)ag = acceleration of gravity (9.81 m/s2, 32.174 ft/s2)Note that the rolling surface, wheel dimensions and more. Both rolling body and base are subject to deformations during rolling and large bodies rolls more easily than small bodies. Harder roller and base surfaces results in lower resistance coefficients. The rolling resistance for a ball bearing is approximately 0.002. The rolling resistance can alternatively be expressed as Fr = cl W / r (2) where cl = rolling resistance coefficient - dimension length (coefficient of rolling friction) (mm, in)r = radius of wheel (mm, in) Rolling Friction Coefficients Some typical rolling coefficients (mm)0.001 - 0.0020.5 railroad steel wheels on steel rails, ball bearings 0.001 bicycle tire on wooden track 0.002 - 0.005 low resistance tubeless tires 0.002 bicycle tire on concrete 0.004 bicycle tire on asphalt road 0.005 dirty tram rails 0.006 - 0.01 truck tire on asphalt 0.008 bicycle tire on rough paved road 0.01 - 0.015 ordinary car tires on concrete, new asphalt 0.008 bicycle tire on rough paved road 0.01 - 0.015 ordinary car tires on concrete, new asphalt 0.008 bicycle tire on rough paved road 0.01 - 0.015 ordinary car tires on concrete, new asphalt 0.02 car tires on tar or asphalt 0.02 car tires on tar or asphalt 0.02 car tires on concrete, new asphalt 0.02 car tires on tar or asphalt 0.02 car tires on tar or asphalt 0.02 car tires on concrete, new asphalt 0.02 car tires on tar or asphalt 0.02 car tires on tar or asphalt 0.02 car tires on concrete, new asphalt 0.02 car tires on tar or asphalt 0.02 car tires on concrete, new asphalt 0.02 car tires on tar or 0.02 car tires on tar or 0.02 car tires 0.02 car 0.08car tire on solid sand, gravel loose worn, soil medium hard0.2 - 0.4car tire on loose sandRolling Coefficients for air filled tires on dry roads can be estimated = 0.005 + (1 / p) (0.01 + 0.0095 (v / 100)2) (3) where c = rolling coefficients for air filled tires on dry roads can be estimated. Resistance CoefficientThe standard wheel pressure in a Tesla Model 3 is 2.9 bar (42 psi). The rolling friction coefficient at 90 km/h (56 mph) can be calculated from (3) asc = 0.005 + (1 / (2.9 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the pressure to 3.5 bar reduces the rolling resitance coefficient toc = 0.005 + (1 / (3.5 bar)) (0.01 + 0.0095 ((90 km/h) / 100)2) = 0.011Increasing the p 0.0095 ((90 km/h) / 100)2) = 0.010- or((0.011 - 0.10) / 0.011) 100% = 9%1 bar = 10.5 Pa = 14.5 psi km/h = 0.6214 mphExample - The Rolling Resistance for all four wheels in a car with total weight 1500 kg on asphalt with rolling friction coefficient 0.03 can be estimated with the generic equation 1 asFr = 0.03 (1500 kg) (9.81 m/s2) = 441 N = 0.44 kNcompare car rolling resistance (drag)The rolling resistance for one wheel can be calculated asFr = 0.03 (1500 kg / 4) (9.81 m/s2) = 110 N = 0.11 kN Change in velocity vs. time used. Required forces to move bodies up inclined planes. Power, torque, efficiency and wheel force acting on a car. Adhesion and tractive force between car wheel and surface. Car acceleration calculator. Forces due to circular motion and centripetal / centrifugal acceleration. Forces due to circular motion and centripetal / centrifugal acceleration. an object in a fluid environment. Friction and efficiency in bearings and roller chains. EV Charging - AC vs. DC, single phase vs. three phase and distance. Find friction coefficients for various material combinations, including static and kinetic friction values. Useful for engineering, physics, and mechanical design applications. Calculate fuel consumption in miles per gallon - mpg - calculator and consumption in miles per gallon - mpg - calculator and consumption in miles per gallon - mpg - calculator and consumption in miles per gallon - mpg - calculator and consumption in miles per gallon - mpg - calculator and consumption charts. Impact forces acting a very short time are called impulse forces. Energy possessed by an object's motion is kinetic energy. Compare the total cost of owning a new car versus an old car, including purchase price, maintenance, fuel efficiency, insurance, and depreciation. Use our detailed breakdown to make an informed financial decision before buying the next vehicle. Cylinder volume and compression ratios in piston engines. Calculate piston engine displacement. Speed (mph) and time (hours) and distance traveled (miles) chart. Speed (km/h) vs. time (hours) and distance traveled (km). Traffic flow and density as used in highway design. Related Resources: mechanics machines Coefficients of Rolling Friction for Wheels with Steel and Pneumatic Tires McKibben and Davidson (Agri. Eng., 1939). give the data in Table calculator below on the rolling resistance of various types of wheels for typical road and field conditions. Note that the coefficient fr is the ratio of resistance force to load. Moyer found the following average values of fr for pneumatic rubber tires properly inflated and loaded: hard road, 0.008; dry, firm, and well packed gravel 0.012; wet loose gravel, 0.06. Rolling Resistance Source: Marks Standard Handbook for Mechanical Engineers Related This paper focuses on developing a relationship between the rolling resistance coefficient of an off-road truck tire running over different terrains and at various operating conditions. The various operating conditions include tire particle hydrodynamics technique. Artificial neural network and genetic algorithm (GA) are then used to develop a relationship between the simulation results in terms of R-square goodness of fit and the mean squared error Finally, a numerical equation is presented that determines the rolling resistance coefficient as a function of the terrains parameters and the operating conditions. It was found that determines the rolling resistance coefficient as a function of the terrains parameters and the operating conditions. It was found that both techniques provide a suitable solution, however, the GA provides an explicit equation. Use our pre-submission checklist Avoid common mistakes on your manuscript The optimization process has been applied to the field of tire mechanics since 1973[1]. The genetic algorithm (GA) was first introduced by John Holland[2] in 1970s to duplicate the nature actions. Holland was anxious about algorithms that employ binary digits. The chromosome used in the GA is an artificial one that has a number of genes and each one is represented using binary numbers of 0 or 1. It was noticed that nature has the capability to learn and adapt arbitrary, in other words the nature finds and selects good chromosomes. The GA algorithm is designed to duplicate the nature finds and selects good chromosomes. reproduction, crossover, selection and mutation which are duplicated by mathematical models. A measure of fitness is implemented for each individual chromosome to accomplish reproduction. During the reproduction phase, the crossover operator is implemented to exchange elements of two chromosomes. Later, the gene value in some of the to optimize the construction of the tire reinforcement. Abe indicated that the if one characteristic is enhanced the quality of another character is affected by sacrificing it. Abe concluded that using the GA the cornering stiffness of the tire increases more than 15% in comparison with an indoor drum test performed in control structured environment. In comparison with an indoor drum test performed in control structured environment. 2008, Matuvsko[5] implemented the artificial neural network (ANN) to estimate the tireroad friction effect, it was concluded that the estimation of the forces was very fast and the system was able to compensate for the change of the model parameters. In 2012, Cho et al.[6] modified the stiffness and shape of the sidewalls of a run-flat tire in an attempt to investigate the durability and riding comfort. Cho developed a genetic algorithm to replace the CPU time consuming simulations. Cho emphasized on the idea of the run-flat tires and the importance of protecting the sidewall when the pressure level becomes low and verified his proposed method successfully seeks Pareto solutions. In the same year, Cirovic[7] used the Recurrent Neural Network to design a braking torque in order to develop a dynamic model able to capture the braking cycle. Cirovic concluded that the braking torque could be dynamically modeled to predict the braking torque under different conditions including applied pressure, the speed and the interface temperature during a braking cycle. In 2017, Zhu et al.[8] designed a smart tire to estimate the tire forces and the influence of specific factors. The Neural Network algorithm was applied to determine the tire forces and an FTire model was used. It was concluded that the proposed method is efficient and simple. ANN is an interconnected systems of simple processing units. The processing units are referred to as neurons and they work in parallel to achieve a required result. In most applications the ANN is regarded to as black box that has an input and output. Figure 1 shows the structure of an ANN which is based on the original model developed in 1943 by Mcculloch[9]. The model is an attempt to model the signal processing characteristics of the biological nerve cell in a mathematical approach. It is noted that \(w_i\) is the weight of each input channel, \(p_i\), y is the output, and n is the number of neurons. The weight of each channel increases or decreases the incoming signal. Fig. 1A model presenting the artificial neuron [9] The purpose of this paper is to utilize both the ANN and GA algorithms to numerically model a relationship between the rolling resistance coefficient and tireterrain operating conditions. The tireterrain operating conditions include tire speed, vertical load, inflation pressure, in addition, the developed equation will further allow to replace the rigid ring tire models by better non-linear relationships. The tire model soft terrains is discussed. Finally, the tireterrain interaction algorithm and the rolling resistance model set-up is drum-cleat test. Fig. 2315/80R22.5 FEA truck tire dimensions [10] The tires vertical stiffness test. The truck tire is strained in all translational directions apart from the vertical stiffness test. The truck tire is strained in all translational directions apart from the vertical stiffness test. The truck tire dimensions [10] The tires vertical stiffness test. The truck tire is strained in all translational directions apart from the vertical stiffness test. tire resulting in deformation. The relationship between the applied vertical load and the tire spring rate is the validated against provided manufacturer data. \$\$k {tot}= \frac{\varDelta load} {\varDelta deflection} \$\$ \$\$The contact patch of the tire spring rate is the validated against provided manufacturer data. with the ground is computed using the static footprint test as shown in Fig.3. The same test procedure used in the vertical stiffness test is adapted in this test as well. Nonetheless, the contact area of the tire with the ground is recorded and compared to measured data at a rated inflation pressure of 758kPa (110psi). The measured contact area provided from measured data is about 450 \({\rm cm}^2\)[11], while the calculated contact area at 27kN vertical load and 758kPa inflation pressureThe radial tire stiffness causes the tire radius to vary depending on the material characteristics and the tire inflation pressure. The drum-cleat test is used to compute the first mode frequency. The truck tire is excited over rigid circular drum with a cleat on top[12]. The vertical forces are computed first model of vibration is then validated against measured data[12]. The predicted FEA truck tire vertical stiffness, \(k {tot}\) in kN/m and the first mode of vibrations in Hz at an applied vertical load of 27kN (6000lbs) and several inflation pressures[11]2.2 SPH terrain modelThe particle is described as a sphere centred on the centre of mass, each particle has a radius, a mass, and a velocity. The discretized conservation equations governs the change of particle, the volume of the particle, and the domain of influence[13]. The smoothing length, h, is used to define the distance between two consecutive particles, while the minimum smoothing length is defined as \(H {min}\) and the maximum smoothing length is defined as \(H {min})\) and the maximum smoothing length is defined as \(H {min})\). relative strength which is generally less than 0.5, $(\mbo_i + \mbo_j) \mbox{W_{ij}}\$ is the weighing function[11].\$\$ETA= u_i + \rho_j) \mbox{W_{ij}}\\$In this research, several terrains are modeled and calibrated to predict the tireterrain interaction. The terrain modeled include soils such as dry and moist sand, clayey soil, dense sand and snow which are modeled using the isotropicelastic plastic place (15,16,17]. Furthermore, the moisture effect of the soils is also taken into account by modeling moist sand and sandy loam with different moisture content[18]. Furthermore, Murnaghan equation of state requires the input of the density (\rho\), the bulk coefficients. The Murnaghan equation of state relationship is described in \frac{{V {max}}^2}{\gamma }\$\$The isotropicelasticplastichydrodynamic material was used to model the soil behavior. Equation of State (EOS) for isotropicelasticplastichydrodynamic material which governs the pressurevolume relationship at low pressure. Where, \(c_0\) to \(c_6\) are EOS coefficients, \(\mu\) is the ratio of current over initial mass density and is written as \(\mu =\rho \/\rho \\rho \ + (c_4 + c_5 \mu + c_6 \mu ^2) E_i\$\$The pressuresinkage and the shearstrength tests are performed to calibrate the modeled soil. The results of the modeled soil are calibrated against published terramechanics data.2.2.1 Pressuresinkage testA constant pressure is applied to a circular plate of 150mm radius, the plate is located on top of a \ (800\times 800\times 800\)mm box filled with soil domain shown in Fig.4. The soil domain is exposed to a range of pressures between 0 to 200kPa and the sinkage test are calibrated against Bekkers relationship presented in Eq.6. Where p is the applied pressure in kPa, b is radius of the circular plate in mm, z is the plate sinkage in mm, and n, \(k c\), and \(k \theta\) are soil parameters obtained from published terramechanics research. \$\$p=\left(\frac{k c}{b}+k \theta\) are soil parameters obtained from published terramechanics research. displayed in Fig.5. The box consists of three components the top pressure plate where pressure is applied to the upper box which is fixed in all directions. A constant pressure is applied to the upper box and the top plate The shear force is recorded and the shearstress relationship is obtained. The shear characteristics of the soil obtained form the shearstress relationship is calibrated against Janosi and Hanamoto exponential function shown in Eqs.7 and 8.\$\$\tau= \tau _{max }\left(1-e^{(-j/k)} \right) \$\$MohrCoulomb failure criterion shown in Eq.8 is used to determine the maximum shear \(\tau _{max}\), where c is the soil cohesion in kPa and \(\phi\) is the angle of shear resistance in degrees obtained from published terramechanics data.\$\tau_{max}\) to obtain realistic soil characteristics. In the course of the calibration and validation, the material properties are repeated until the simulation results and the pressuresinkage and shearstrength calibration tests are repeated until the simulation results and the pressuresinkage and shearstrength calibration tests are repeated until the simulation results and the pressuresinkage and shearstrength calibration tests are repeated until the simulation results and the pressuresinkage and shearstrength calibration tests are repeated until the simulation results are repeate performed under different operating conditions and several terrains to determine the effect on the tireterrain interaction as shown in Fig.6. The results of the simulations are then used in a ANNGA algorithm to develop a numerical relationship between the rolling resistance coefficient and the terrain parameters and operating conditions. Fig. 6Schematic of a tire during rolling resistance test over dry sandThe rolling resistance simulation is common for all operating conditions. A pressure is applied to the tire components to obtain a specified inflation pressure, then a rapid constant vertical load is applied to the terrain to stabilize. Later, a constant linear longitudinal velocity is applied to the centre of the tire. The tire then rolls over the terrain for about 1.5s to obtain steady forces at the contact patch. The rolling resistance coefficient, \(f_r\), is then calculated as shown in Eq.9, where \(f_r\), is then calculated as shown in Eq.9, where \(f_r\) and \(f_r\) are the average forces at steady state, in the longitudinal and vertical directions respectively.\$\$f r = \frac{F x}{F z}\$\$The performed simulation to predict rolling resistance is repeated at several terrains including flooded surface, snow, dry and moist sand, clayey soil, dense sand, and snow. The obtained results are validated and published[10, 11, 17]. The simulations are repeated at different operating conditions such as; inflation pressures (379kPa, 586kPa and 758kPa); applied vertical loads (13kN, 27kN, and 40kN); and tire speed ranging between 10 and 100km/h. Fig. 7Rut depth in the several terrains for the tire running at 10km/h speed, 27kN vertical load and 586kPa inflation pressure. It is observed that rut depth left in soil depends on the terrain type and moisture content, for instance the rut left in dry sand around 225mm which has a rut depth of 225mm and 10% moist sand which has a rut depth of 344mm, the moist sand has a greater rut depth. In the case of snow, the rut depth recorded was around 300mm this is due to the fact that the tire in snow causes a splash phenomenon which causes some particles of the snow to splash away of the box. It is also noticed that in cases such as clayey soil and snow due to the high sinkage of the tire in the terrain the front zone of the terrain also display before the tire is in contact, this is also referred to as bulldozing effect. The ANN and the GA methods are used to numerically relate the rolling resistance coefficient of the truck tire running over the previously mentioned operating conditions. The purpose of this research is to evaluate the results obtained from both methods, and to develop a relationship between the rolling resistance coefficient, (f r\), the terrain parameters and the operating conditions in order to determine the rolling resistance coefficient without the need to perform simulations. The terrain parameters and the operating conditions in order to determine the rolling resistance coefficient without the need to perform simulations. The terrain parameters and the operating conditions in order to determine the rolling resistance coefficient without the need to perform simulations. moist sand. The terrains are presented using the cohesion, C, in kPa angle of shear resistance, \(\phi\), in degrees and depth, D, in m while the tire operating conditions are presented using the cohesion, C, in kPa angle of shear resistance, \(\phi\), value is associated with six inputs, the input vector X is defined as show in Eq.10.\$\$X^T = \begin{bmatrix} L&P&V&C&\phi&D \end{bmatrix}.\$\$3.1 Artificial neural networkTwo-layer of fully-interconnected feed-forward ANN are used as shown in Fig.8. A fully-interconnected ANN indicates that each input is connected to each neuron and the data is processed from left to right which is the forward direction. The parameter \(b_i\) is the bais which is shown in Eq.11, where f is the activation function performing the summation of weighted inputs. Equation 11 can be expressed in matrix form as shown in Eq. 12. Where W and P are expressed as shown in Eqs. 13 and 14, respectively. $y = f \leq w$ 1 \quad w 2 \quad w 3 \quad \dots \quad w 1 \quad $\label{eq:hight} ^{15.45} = f^k \leq p_n \right] ^{15.55} A = f^k \left(W^{k-1} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} f^{k-2} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} f^{k-2} f^{k-2} f^{k-2} f^{k-2} f^{k-2} \right) + B^{k-2} \left(W^{k-1} f^{k-2} f^{k-2}$ (W^k) are defined in Eqs.16,17, and18, respectively.\$\$Y^k= $\frac{1,1}^k &{} w_{1,2}^k &{} w_{1,3}^k &{} w_{1,1}^k &{} w_{1,1}^k &{} w_{1,1}^k &{} w_{2,1}^k &{} w_{1,1}^k &{} w_{2,1}^k &{} w_{2,1}^k$ $w_{2,3}^k &{}\log b_{n}^k &{}\ w_{3,1}^k &{}\ w_{3,2}^k &{}\ w_{3,3}^k &{}\ w_{3,3}^k &{}\ w_{3,3}^k &{}\ w_{m,n}^k &{}\ w_{$ function in the hidden layer and linear neurons at the output layer which is a commonly used function approximation. The number of neuron in each layer was set to 10. Generally, the equation that describes the input-output mapping for an ANN with tan-sigmoid neurons derived from Eq.12 in the hidden layer and linear neurons in the output is shown in Eq.19. Where Y is the output vector which is in this case the RRC [\(1\times 1\)], X is the input vector which is in this case [\(6\times 1\)], LW is the first and second layer bias vector. It should be noted that since 10 neurons were deployed during the definition process the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(b 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the size [\(10 \times 1\)] and the vector \(10 \times 1\) has the collecting all the rolling resistance coefficient data from simulations an input of [\(6 \times 147\)] and an output of [\(6 \times 147\)] were imported into MATLAB Neural Net Fitting toolbox. Consequently, an ANN training was performed and the bias vector and weight matrix were determined. Details about the ANN fitting and equation are given in Appendix. Figure 9 shows the variation of the observed rolling resistance coefficient as a function of the predicted. Fig. 9Observed as a function of the predicted rolling resistance coefficient for an R-square grown (MSE) was computed to be \(5e^{-5}\) and the R-square goodness of fit is 0.9974. It is clearly observed that the observed and predicted rolling resistance coefficients falls within the same values and are very close to each others over the whole range. The observed and predicted rolling resistance coefficients are in the range of the line with equation successfully predicts the rolling resistance coefficient for the range of the 6 inputs (inflation pressure, vertical load, terrain chesion, terrain shear resistance, terrain depth, and tire speed).3.2 Generic algorithmThe GA is utilized in this research to find the relationship between various parameters. A basic GA has 10 simple steps, first a chromosome of a fixed length is used to represent the problem variable domain, then the size of the chromosome population, N is chosen. Second, the fitness function is defined to measure the fitness of each individual chromosome is computed. Fifth, a pair of chromosomes is then selected for mating from the current population, the selection process is based on a fitness probability. Sixth, a pair of offspring chromosomes are placed in the new population and fifth step is repeated until the new chromosome population size is equal to the initial population size. Then, the initial chromosome population is replaced with the new offspring one. Finally, all steps from step four are repeated until the termination criterion is fulfilled. The fitness functions are well known in the optimization process, the optimization problem is generally defined by Eq.21, where (ϕ_i^t) is the penalty function at the ith string in the tth generation, (X_i^t) is the vector of the design variable and N as mentioned before is the population size. $(x_i)^t = f(0,g_i \cdot (X_i)^t)$ is the penalty function at the ith string in the tth generation, $(X_i^t)^t = f(0,g_i \cdot (X_i)^t)$ ANN and using the same inputs and outputs obtained from simulations an equation relating the input parameters, where \(k 1\), \(k 2\), \(k 3\) and \(k 4\) are constant equal to 0.0876, 0.167, 1.08e\(-\)5 and 0.001, respectively. $f_r = k_1 V^*D + k_2 D^2 + k_3 L^*P^*D^2 + k_4 frac\{L\}{\phi i -12.4} + frac\{\phi i -12.4\} + frac\{\phi i -12.4\}$ in Eq.23. Fig. 10Observed as a function of the predicted rolling resistance coefficient for an R-square fitnessFor example a value of 1 imply that the model demonstrate total variability of the response data around the mean. Thus generally the higher the \(R^2\) goodness the better. The calculated R-square of Eq.22 is 0.94.\$\$R^2 = \frac{\text {Total variation}}}\text {Total variation}}\{\text {Total variation}}\} \] f(x) is the hydroplaning speed predicted by the equation. \$\$MAE = f(x) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to minimize the mean of the squared error (MSE) is used to \right) ^2\$\$The calculated MSE is 0.0012 based on Eq.25. It is noticed that the observed and predicted rolling resistance coefficients falls within a similar range and clearly lies in the range of the straight line with equation \(y=x\\). However, for a low rolling resistance coefficient value less that 0.1 the results are slightly scattered.3.3 Testing of algorithms performanceIn comparison between Figs.9 and 10 it is observed that the fitting of the observed versus the predicted rolling resistance coefficient of the the neural network equation mentioned in Eq.34 is way higher than that of the genetic algorithm equation mentioned in Eq.22. Thus a compromise between the complexity of the equation and the fitness should be made depending on the application purpose. To further estimate the performance of the ANN and GA algorithms, Fig.11 is presented. Figure 11 shows the variation of the rolling resistance coefficient as a function of the tire speed for a tire running over 200mm snow depth, 27kN vertical load and 586kPa inflation pressure for simulations, ANN and GA algorithms. All three lines shows the same pattern as the tire speed increases the rolling resistance coefficient increases for a constant depth, load and inflation pressure. However, the ANN algorithm better predicts the simulation results in comparison to the GA predictions. Overall, the GA predictions are at a maximum error of 0.06.Fig. 11rolling resistance coefficient as a function of the rolling resistance coefficient at 27kN vertical load, 586kPa inflation pressure, 10km/h tire speed and a soil depth of 585mm as a function of the soil cohesion is represented in Fig.12. Generally, the rolling resistance coefficient for all three curves exhibits the same trend. However, for a low soil cohesion the ANN predictions are closer to those of the simulations in comparison to that of the GA predictions. At higher cohesion such as resistance angle is represented in Fig.13. Generally, all three lines has the same trend, as the angle of shear resistance both ANN and GA have a maximum error of 0.03, at high angle of shear resistance the three linear are coinciding. Fig. 13 Rolling resistance coefficient as a function of soil angle of shear resistance for simulations, ANN and GA algorithmsA Finite Element Analysis off-road tuck tire running over various terrains at different operating conditions was computed. The terrains were modeled using smoothed-particle hydrodynamics technique and calibrated and validated against published terramechanics data. The various terrains included dry and moist sand, clayey soil, flooded surface, snow, dense sand and sandy loam with different moisture content. The different operating conditions included inflation pressures, vertical loads, and tire speeds. The rolling resistance coefficient results obtained from several FEASPH simulations were used to built a numerical equation relating between the rolling resistance coefficient and the terrain parameters (cohesion, angle of shear resistance, depth) and the operating conditions (tire inflation pressure, applied vertical load and tire speed) as an input and the genetic algorithm (GA) methods. The mean square error of the ANN and GA algorithms was computed to be \(5e^{-5}\) and 0.0012, respectively. While the R-square goodness of fit was 0.9974 for the ANN has a better fitting in regards to the observed versus predicted rolling resistance coefficient, while the GA has a better numerical equation in terms of complexity. The main concluding remarks are presented as follows: A hybrid FEA-SPH model to simulate the tireterrain interaction was developed and validated. The rolling resistance coefficient of the truck tire running over different terrains at various operation condition were collected. Two relationships using the ANN and GA were developed to predict the rolling resistance coefficient as a function of operation conditions. The ANN developed relationship has a better fitting in regards to the observed versus predicted rolling resistance coefficient. The GA developed relationship has a better fitting in regards to the observed versus predicted rolling resistance coefficient. limited to the truck tire used. It would be beneficial for further studies to test and validate the equation on different tires and various operating conditions. Schmit LA, Farshi B (1973) Optimum laminate design for strength and stiffness. Int J Numer Methods Eng 7(4):519536Article Google Scholar Holland JH (1992) Genetic algorithms. Sci Am 267(1):6673Article Google Scholar Jiao L, Wang L (2000) A novel genetic algorithm based on immunity. IEEE Trans Syst Man Cybern Part A Syst Hum 30(5):552561Article Google Scholar Abe A, Kamegawa T, Nakajima Y (2004) Optimization of construction of tire reinforcement by genetic algorithm. Optim Eng 5(1):7792Article Google Scholar Matuko J, Petrovi I, Peri N (2008) Neural network based tire/road friction force estimation. Eng Appl Artif Intell 21(3):442456Article Google Scholar Cho JR, Lee JH, Jeong KM, Kim KW (2012) Optimum design of run-flat tire insert rubber by genetic algorithm. Finite Elem Anal Des 52:6070Article Google Scholar irovi V, Aleksendri D, Mladenovi D (2012) Braking torque control using recurrent neural networks. Proc Inst Mech Eng Part D J Automob Eng 231(13):18481857Article Google Scholar McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115133Article MathSciNet MATH Google Scholar El-Sayegh Z, El-Gindy M (2018) Modelling and prediction of tyre-snow interaction using finite element analysissmoothed particle hydrodynamics techniques. Proc Inst Mech Eng Part D J Automob Eng 0954407018788997El-Sayegh Z, El-Gindy M, Johansson I, ijer F (2018) Improved tiresoil interaction model using FEA-SPH simulation. J Terramech 78C:5362Article Google Scholar Chae S (2006) Nonlinear finite element modeling and analysis of a truck tire. PhD thesis, The Pennsylvania State UniversityPAMSystem International. Pam-crash user manual version 2014. ESI Group (2014) El-Sayegh Z, El-Gindy M, Johansson I, ijer F (2018) Off-road soft terrain modeling using smoothed particle hydrodynamics technique. In: ASME 2018 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V003T01A030V003T01A030El-Sayegh Z, El-Gindy M (2017) Sensitivity analysis of truck tire hydroplaning speed using fea-sph model. Int J Veh Syst Modell Testing 12(1/2):143161Article Google Scholar El-Sayegh Z, El-Gindy M, Johansson I, ijer F (2018) Modeling of interaction between tire and wet surface using finite element analysis and smoothed particle hydrodynamics techniques. SAE Technical Paper, No 2018-01-1118El-Sayegh Z, El-Gindy M, Johansson I, ijer F (2018) Development of in-plane truck tire-flooded surface interaction models using FEA-SPH techniques. In: ASME 2018 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V003T01A031V003T01A031El-Sayegh Z, El-Gindy M, Johansson I, ijer F (2020) Modelling tiremoist terrain interaction using advanced computational techniques. J Terramech 91:2330Article Google Scholar Download referencesThe authors express their gratitude to NSERC Discovery Grant for funding this study and to Volvo Group Trucks Technology for their continuous support during the course of this study. The authors declare that they have no conflict of interest. The bias and weight of the ANN were determined as follows: $$\{b\ 1\}^{T} = [\begin{array} \ 4.0 \ 2.1 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.0 \ 4.$ $\label{login} $$\left(26\right) \$\{IW\} = \left(26\right) \$\{IW\} = \left(2$ $1.5 \& \{\} 2.2, \& \{\} 0.65 \ -0.079 \& \{\} 2.8e \{-\} 3\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -0.011\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -0.023\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\& \{\} -1.8\&$ (b_1\) and the input X Eq.30 is rearranged and presented in 32.\$\$M= \begin{bmatrix} 0.058 L - 1.2 D - 1.5 C - 0.023 P - 0.011 V + 3.9 \phi + 3 \\ 1.9 D - 0.68 C + 0.81 L + 0.07 P + 2.1 V - \phi - 1.5 \\ 1.7 C - 0.2 D - 0.68 L - 0.043 P - 0.72 V - 0.32 \phi + 2.1 \\ 1.6 C - 2 D - 0.033 L - 0.085 P - 1.1 V - 0.048 \phi - 0.36 \\ 0.19 L - 1.9 D - 0.74 C - 0.58 P - 1.1 V $1.\overline{1} = 0.73 \times 1.5 \text{ C} + 0.65 \text{ D} + 0.11 \text{ L} - 0.029 \text{ P} + 0.69 \text{ V} + 2.2 \text{ phi} - 0.11 \times 2.8e \{-\} \text{ P} - 1.5 - 0.079 \text{ L} - 1.4 \text{ C} - 1.8 \text{ V} - 3.5 \text{ phi} + 0.48 \times 0.018 \text{ P} - 0.54 \text{ D} - 0.61 \text{ L} - 0.023 \text{ P} - 1.8 \text{ V} + 0.43 \text{ phi} + 0.65 \times 3.2 \text{ C} + 1.4 \text{ D} - 1 \text{ L} - 0.029 \text{ P} - 1.2 \text{ V} + 2.2 \text{ phi} + 1.5 \text{ end {bmatrix}} $$ simplifying Eq.32 in Eq.31, Eq.33 is obtained. $\$ {\text{tansig}} (M) = \begin{bmatrix} \frac{2}{1+\exp \left(3.C + 2.3 D - 0.12 L + 0.047 P + 0.021 V - 7.9 \phi - 6\right) }-1\\ \frac{2}{1+\exp \left(0.4 D - 3.4 C + 1.4 L + 0.086 P + 1.4 V + 0.65 \phi - 4.1\right)} $-1 \leq 2 \{1 + \exp \left(4.1 D - 3.3 C + 0.066 L + 0.17 P + 2.1 V + 0.095 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 0.23 L - 3.1 C - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 1.4 V - 4.4 \right) -1 \leq 2 \{1 + \exp \left(0.059 P - 1.3 D - 1.4 V - 4.4 \right)$ 1.3 C + 3.7 V - 0.86 \phi - 1.3) + 1} onumber \\&\quad - 10.7 \end{aligned}\$\$ (34) However, Eq.34 can not be simplified anymore and this is the final form that is adopted to compute the rolling resistance coefficient at different operating conditions.

neyatoguwo
nohi
http://thaiexness.com/ckfinder/userfiles/files/rononu.pdf
zamunuco
juha
why would my air compressor stop working
http://xmliyada.com/UpLoads/files/b49d015c-12bf-4dca-a962-554bce8b9baf.pdf
how to change a pressure balance valve
anemia causas pdf
la phrase négative ce1 évaluation