
	

https://xelederuvezadef.tugoduzak.com/715942717983924459159789273507285703249592?zipolovitobumekifowesijuwugepexepesefuwedokazafemezevobuxewexudaxofewofidojoresovisazexuse=pesejizakaluzasewodobuxokadobijikisedelubavebileralakubifafejexajapefajizivetatepinapedituwamubizevavevazonigagixisuzexoxamevedizulunuberokalozugixozakewalibuvinawagonokudiwapefatesofobobererorewowazinosewefeso&utm_term=list+of+algorithms+in+data+structure&ruwemipufobebefubixikodekowadowojevamatojaxukutagilimimerulonugexovurutu=lemesadumuvugexinapuxokotefatazaraganubarovafusokoxususujazezusakuvixunonivuroxirirutegugulibodawafevipute

Good	knowledge	of	standard	algorithms	is	equally	important	as	choosing	the	right	data	structure.	The	following	is	a	list	of	the	top	25	algorithms	every	programmer	and	computer	science	student	should	know.			Also	See:	Top	50	Classic	Data	Structures	Problems	Thanks	for	reading.	To	share	your	code	in	the	comments,	please	use	our	online	compiler
that	supports	C,	C++,	Java,	Python,	JavaScript,	C#,	PHP,	and	many	more	popular	programming	languages.	Like	us?	Refer	us	to	your	friends	and	support	our	growth.	Happy	coding	:)	Data	Structures	&	Algorithms	(DSA)	is	often	considered	to	be	an	intimidating	topic - a	common	misbelief.	Forming	the	foundation	of	the	most	innovative	concepts	in	tech,
they	are	essential	in	both	jobs/internships	applicants'	and	experienced	programmers'	journey.	Mastering	DSA	implies	that	you	are	able	to	use	your	computational	and	algorithmic	thinking	in	order	to	solve	never-before-seen	problems	and	contribute	to	any	tech	company's	value	(including	your	own!).	By	understanding	them,	you	can	improve	the
maintainability,	extensibility	and	efficiency	of	your	code.	These	being	said,	I've	decided	to	centralize	all	the	DSA	threads	that	I	have	been	posting	on	Twitter	during	my	#100DaysOfCode	challenge.	This	article	is	aiming	to	make	DSA	not	look	as	intimidating	as	it	is	believed	to	be.	It	includes	the	15	most	useful	data	structures	and	the	15	most	important
algorithms	that	can	help	you	ace	your	interviews	and	improve	your	competitive	programming	skills.	Each	chapter	includes	useful	links	with	additional	information	and	practice	problems.	DS	topics	are	accompanied	by	a	graphic	representation	and	key	information.	Every	algorithm	is	implemented	into	a	continuously	updating	Github	repo.	At	the	time
of	writing,	it	contains	the	pseudocode,	C++,	Python	and	Java	(still	in	progress)	implementations	of	each	mentioned	algorithm	(and	not	only).	This	repository	is	expanding	thanks	to	other	talented	and	passionate	developers	that	are	contributing	to	it	by	adding	new	algorithms	and	new	programming	languages	implementations.	Contents	I.	Data
Structures	Arrays	Linked	Lists	Stacks	Queues	Maps	&	Hash	Tables	Graphs	Trees	Binary	Trees	&	Binary	Search	Trees	Self-balancing	Trees	(AVL	Trees,	Red-Black	Trees,	Splay	Trees)	Heaps	Tries	Segment	Trees	Fenwick	Trees	Disjoint	Set	Union	Minimum	Spanning	Trees	II.	Algorithms	Divide	and	Conquer	Sorting	Algorithms	(Bubble	Sort,	Counting
Sort,	Quick	Sort,	Merge	Sort,	Radix	Sort)	Searching	Algorithms	(Linear	Search,	Binary	Search)	Sieve	of	Eratosthenes	Knuth-Morris-Pratt	Algorithm	Greedy	I	(Maximum	number	of	non-overlapping	intervals	on	an	axis)	Greedy	II	(Fractional	Knapsack	Problem)	Dynamic	Programming	I	(0–1	Knapsack	Problem)	Dynamic	Programming	II	(Longest
Common	Subsequence)	Dynamic	Programming	III	(Longest	Increasing	Subsequence)	Convex	Hull	Graph	Traversals	(Breadth-First	Search,	Depth-First	Search)	Floyd-Warshall	/	Roy-Floyd	Algorithm	Dijkstra's	Algorithm	&	Bellman-Ford	Algorithm	Topological	Sorting	I.	Data	Structures	1.	Arrays	Arrays	are	the	simplest	and	most	common	data
structures.	They	are	characterised	by	the	facile	access	of	elements	by	index	(position).	What	are	they	used	for?	Imagine	having	a	theater	chair	row.	Each	chair	has	assigned	a	position	(from	left	to	right),	therefore	every	spectator	will	have	assigned	the	number	from	the	chair	(s)he	will	be	sitting	on.	This	is	an	array.	Expand	the	problem	to	the	whole
theater	(rows	and	columns	of	chairs)	and	you	will	have	a	2D	array	(matrix)!	Properties	elements'	values	are	placed	in	order	and	accessed	by	their	index	from	0	to	the	length	of	the	array-1;	an	array	is	a	continuous	block	of	memory;	they	are	usually	made	of	elements	of	the	same	type	(it	depends	on	the	programming	language);	access	and	addition	of
elements	are	fast;	search	and	deletion	are	not	done	in	O(1).	Useful	Links	2.	Linked	Lists	Linked	lists	are	linear	data	structures,	just	like	arrays.	The	main	difference	between	linked	lists	and	arrays	is	that	elements	of	a	linked	list	are	not	stored	at	contiguous	memory	locations.	It	is	composed	of	nodes - entities	that	store	the	current	element's	value	and
an	address	reference	to	the	next	element.	That	way,	elements	are	linked	by	pointers.	What	are	they	used	for?		One	relevant	application	of	linked	lists	is	the	implementation	of	the	previous	and	the	next	page	of	a	browser.	A	double	linked	list	is	the	perfect	data	structure	to	store	the	pages	displayed	by	a	user's	search.	Properties	they	come	in	three
types:	singly,	doubly	and	circular;	elements	are	NOT	stored	in	a	contiguous	block	of	memory;	perfect	for	an	excellent	memory	management	(using	pointers	implies	dynamic	memory	usage);	insertion	and	deletion	are	fast;	accessing	and	searching	elements	are	done	in	linear	time.	Useful	Links	3.	Stacks	A	stack	is	an	abstract	data	type	that	formalizes
the	concept	of	restricted	access	collection.	The	restriction	follows	the	rule	LIFO	(Last	In,	First	Out).	Therefore,	the	last	element	added	in	the	stack	is	the	first	element	you	remove	from	it.	Stacks	can	be	implemented	using	arrays	or	linked	lists.	What	are	they	used	for?	The	most	common	real-life	example	uses	plates	placed	one	over	another	in	the
canteen.	The	plate	which	is	at	the	top	is	the	first	to	be	removed.	The	plate	placed	at	the	bottommost	is	the	one	that	remains	in	the	stack	for	the	longest	period	of	time.	One	situation	when	stacks	are	the	most	useful	is	when	you	need	to	obtain	the	reverse	order	of	given	elements.	Just	push	them	all	in	a	stack	and	then	pop	them.	Another	interesting
application	is	the	Valid	Parentheses	Problem.	Given	a	string	of	parantheses,	you	can	check	that	they	are	matched	using	a	stack.	Properties	you	can	only	access	the	last	element	at	one	time	(the	one	at	the	top);	one	disadvantage	is	that	once	you	pop	elements	from	the	top	in	order	to	access	other	elements,	their	values	will	be	lost	from	the	stack's
memory;	access	of	other	elements	is	done	in	linear	time;	any	other	operation	is	in	O(1).	Useful	Links	4.	Queues	A	queue	is	another	data	type	from	the	restricted	access	collection,	just	like	the	previously	discussed	stack.	The	main	difference	is	that	the	queue	is	organised	after	the	FIFO	(First	In,	First	Out)	model:	the	first	inserted	element	in	the	queue	is
the	first	element	to	be	removed.	Queues	can	be	implemented	using	a	fixed	length	array,	a	circular	array	or	a	linked	list.	What	are	they	used	for?		The	best	use	of	this	abstract	data	type	(ADT)	is,	of	course,	the	simulation	of	a	real	life	queue.	For	example,	in	a	call	center	application,	a	queue	is	used	for	saving	the	clients	that	are	waiting	to	receive	help
from	the	consultant - these	clients	should	get	help	in	the	order	they	called.		One	special	and	very	important	type	of	queue	is	the	priority	queue.	The	elements	are	introduced	in	the	queue	based	on	a	"priority"	associated	with	them:	the	element	with	the	highest	priority	is	the	first	introduced	in	the	queue.	This	ADT	is	essential	in	many	Graph	Algorithms
(Dijkstra's	Algorithm,	BFS,	Prim's	Algorithm,	Huffman	Coding - more	about	them	below).	It	is	implemented	using	a	heap.		Another	special	type	of	queue	is	the	deque	(pun	alert	it's	pronounced	"deck").	Elements	can	be	inserted/removed	from	both	endings	of	the	queue.	Properties	we	can	directly	access	only	the	"oldest"	element	introduced;	searching
elements	will	remove	all	the	accessed	elements	from	the	queue's	memory;	popping/pushing	elements	or	getting	the	front	of	the	queue	is	done	in	constant	time.	Searching	is	linear.	Useful	Links	Visualizing	Queues	LeetCode	Problem	Set	5.	Maps	&	Hash	Tables	Maps	(dictionaries)	are	abstract	data	types	that	contain	a	collection	of	keys	and	a	collection
of	values.	Each	key	has	a	value	associated	with	it.		A	hash	table	is	a	particular	type	of	map.	It	uses	a	hash	function	to	generate	a	hash	code,	into	an	array	of	buckets	or	slots:	the	key	is	hashed	and	the	resulting	hash	indicates	where	the	value	is	stored.		The	most	common	hash	function	(among	many)	is	the	modulo	constant	function.	e.	g.	if	the	constant
is	6,	the	value	of	the	key	x	is	x%6.	Ideally,	a	hash	function	will	assign	each	key	to	a	unique	bucket,	but	most	of	their	designs	employ	an	imperfect	function,	which	might	conduct	to	collision	between	keys	with	the	same	generated	value.	Such	collisions	are	always	accomodated	in	some	way.	What	are	they	used	for?		The	most	known	application	of	maps	is
a	language	dictionary.	Each	word	from	a	language	has	assigned	its	definition	to	it.	It	is	implemented	using	an	ordered	map	(its	keys	are	alphabetically	ordered).		Contacts	is	also	a	map.	Each	name	has	a	phone	number	assigned	to	it.		Another	useful	application	is	normalization	of	values.	Let's	say	we	want	to	assign	to	each	minute	of	a	day	(24	hours	=
1440	minutes)	an	index	from	0	to	1439.	The	hash	function	will	be	h(x)	=	x.hour*60+x.minute.	Properties	keys	are	unique	(no	duplicates);	collision	resistance:	it	should	be	hard	to	find	two	different	inputs	with	the	same	key;	pre-image	resistance:	given	a	value	H,	it	should	be	hard	to	find	a	key	x,	such	that	h(x)=H;	second	pre-image	resistance:	given	a
key	and	its	value,	it	should	be	hard	to	find	another	key	with	the	same	value;	terminology:	*	"map":	Java,	C++;	*	"dictionary":	Python,	JavaScript,	.NET;	*	"associative	array":	PHP.	because	maps	are	implemented	using	self-balancing	red-black	trees	(explained	below),	all	operations	are	done	in	O(log	n);	all	hash	table	operations	are	constant.	Useful
Links	6.	Graphs	A	graph	is	a	non-linear	data	structure	representing	a	pair	of	two	sets:	G={V,	E},	where	V	is	the	set	of	vertices	(nodes),	and	E	the	set	of	edges	(arrows).	Nodes	are	values	interconnected	by	edges - lines	that	depict	the	dependency	(sometimes	associated	with	a	cost/distance)	between	two	nodes.		There	are	two	main	types	of	graphs:
directed	and	undirected.	In	an	undirected	graph,	the	edge	(x,	y)	is	available	in	both	directions:	(x,	y)	and	(y,	x).	In	a	directed	graph,	the	edge	(x,	y)	is	called	an	arrow	and	the	direction	is	given	by	the	order	of	the	vertices	in	its	name:	arrow	(x,	y)	is	different	from	arrow	(y,	x).	What	are	they	used	for?		Graphs	are	the	foundation	of	every	type	of	network:	a
social	network	(like	Facebook,	LinkedIn),	or	even	the	network	of	streets	from	a	city.	Every	user	of	a	social	media	platform	is	a	structure	containing	all	of	his/her	personal	data - it	represents	a	node	of	the	network.	Friendships	on	Facebook	are	edges	in	an	undirected	graph	(because	it	is	reciprocal),	while	on	Instagram	or	Twitter,	the	relationship
between	an	account	and	its	followers/following	accounts	are	arrows	in	a	directed	graph	(not	reciprocal).	Properties		Graph	theory	is	a	vast	domain,	but	we	are	going	to	highlight	a	few	of	the	most	known	concepts:	the	degree	of	a	node	in	an	undirected	graph	is	the	number	of	its	incident	edges;	the	internal/external	degree	of	a	node	in	a	directed	graph
is	the	number	of	arrows	that	direct	to/from	that	node;	a	chain	from	node	x	to	node	y	is	a	succesion	of	adjacent	edges,	with	x	as	its	left	extremity	and	y	as	its	right;	a	cycle	is	a	chain	were	x=y;	a	graph	can	be	cyclic/acyclic;	a	graph	is	connected	if	there	is	a	chain	between	any	two	nodes	from	V;	a	graph	can	be	traversed	and	processed	using	Breadth	First
Search	(BFS)	or	Depth	First	Search	(DFS),	both	done	in	O(|V|+|E|),	where	|S|	is	the	cardinal	of	the	set	S;	Check	the	links	below	for	other	essential	info	in	graph	theory.	Useful	Links	7.	Trees	A	tree	is	an	undirected	graph,	minimal	in	terms	of	connectivity	(if	we	eliminate	a	single	edge	the	graph	won't	be	connected	anymore)	and	maximal	in	terms	of
acyclicity	(if	we	add	a	single	edge	the	graph	won't	be	acyclic	anymore).	So	any	acyclic	connected	undirected	graph	is	a	tree,	but	for	simplicity,	we	will	refer	to	rooted	trees	as	trees.		A	root	is	one	fixed	node	that	establishes	the	direction	of	the	edges	in	the	tree,	so	that's	where	everything	"starts".	Leaves	are	the	terminal	nodes	of	the	tree - that's	where
everything	"ends".		A	child	of	a	vertice	is	its	incident	vertice	below	it.	A	vertice	can	have	multiple	children.	A	vertice's	parent	is	its	incident	vertice	above	it - it's	unique.	What	are	they	used	for?		We	use	trees	anytime	we	should	depict	a	hierarchy.	Our	own	genealogical	tree	is	the	perfect	example.	Your	oldest	ancestor	is	the	root	of	the	tree.	The
youngest	generation	represents	the	leaves'	set.			Trees	can	also	represent	the	subordinate	relationship	in	the	company	you	work	for.	That	way	you	can	find	out	who	is	your	manager	and	who	you	should	manage.	Properties	the	root	has	no	parent;	leaves	have	no	children;	the	length	of	the	chain	between	the	root	and	a	node	x	represents	the	level	x	is
situated	on;	the	height	of	a	tree	is	the	maximum	level	of	it	(3	in	our	example);	the	most	common	method	to	traverse	a	tree	is	DFS	in	O(|V|+|E|),	but	we	can	use	BFS	too;	the	order	of	the	nodes	traversed	in	any	graph	using	DFS	form	the	DFS	tree	that	indicates	us	the	time	a	node	has	been	visited.	Useful	Links	TutorialsPoint:	Trees	Codeforces	Problem
Set	8.	Binary	Trees	&	Binary	Search	Trees	A	Binary	Tree	is	a	special	type	of	tree:	each	vertice	can	have	maximum	two	children.	In	a	strict	binary	tree,	every	node	has	exactly	two	children,	except	for	the	leaves.	A	complete	binary	tree	with	n	levels	has	all	2ⁿ-1	possible	nodes.		A	binary	search	tree	is	a	binary	tree	where	nodes'	values	belong	to	a	totally
ordered	set - any	arbitrary	chosen	node's	value	is	bigger	than	all	the	values	from	the	left	subtree	and	smaller	than	the	ones	from	the	right	subtree.	What	are	they	used	for?		One	important	application	of	BTs	is	the	representation	and	evaluation	of	logical	expressions.	Each	expression	can	be	decomposed	into	variables/constants	and	operators.	This
method	of	expression	writing	is	called	Reverse	Polish	Notation	(RPN).	That	way,	they	can	form	a	binary	tree,	where	internal	nodes	are	operators	and	leaves	are	variables/constants - it's	called	an	Abstract	Syntax	Tree	(AST).			BSTs	are	frequently	used	because	of	their	fast	search	of	keys	property.	AVL	Trees,	Red-Black	Trees,	ordered	sets	and	maps	are
implemented	using	BSTs.	Properties	there	are	three	types	of	DFS	traversals	for	BTs:	*	Preorder	(Root,	Left,	Right);	*	Inorder	(Left,	Root,	Right);	*	Postorder	(Left,	Right,	Root);	all	done	in	O(n)	time;	the	inorder	traversal	gives	us	all	the	nodes	in	the	tree	in	ascending	order;	the	left-most	node	is	the	minimum	value	in	the	BST	and	the	rightmost	is	the
maximum;	notice	that	RPN	is	the	inorder	traversal	of	the	AST;	a	BST	has	the	advantages	of	a	sorted	array,	but	the	disadvantage	of	logarithmic	insertion - all	of	its	operations	are	done	in	O(log	n)	time.	Useful	Links	9.	Self-balancing	trees	All	these	types	of	trees	are	self-balancing	binary	search	trees.	The	difference	is	in	the	way	they	balance	their	height
in	logarithmic	time.	AVL	Trees	are	self-balancing	after	every	insertion/deletion	because	the	difference	in	module	between	the	heights	of	the	left	subtree	and	the	right	subtree	of	a	node	is	maximum	1.	AVLs	are	named	after	their	inventors:	Adelson-Velsky	and	Landis.	In	Red-Black	Trees,	each	node	stores	an	extra	bit	representing	color,	used	to	ensure
the	balance	after	every	insert/delete	operation.	In	Splay	trees,	recently	accessed	nodes	can	be	quickly	accesed	again,	thus	the	amortized	time	complexity	of	any	operation	is	still	O(log	n).	What	are	they	used	for?	An	AVL	seems	to	be	the	best	data	structure	in	Database	Theory.	RBTs	are	used	to	organize	pieces	of	comparable	data,	such	as	text
fragments	or	numbers.	In	the	version	8	of	Java,	HashMaps	are	implemented	using	RBTs.	Data	structures	in	computational	geometry	and	functional	programming	are	also	built	with	RBTs.	Splay	trees	are	used	for	caches,	memory	allocators,	garbage	collectors,	data	compression,	ropes	(replacement	of	string	used	for	long	text	strings),	in	Windows	NT
(in	the	virtual	memory,	networking,	and	file	system	code).	Properties	the	amortized	time	complexity	of	ANY	operation	in	ANY	self-balancing	BST	is	O(log	n);	the	maximum	height	of	an	AVL	in	worst	case	is	1.44	*	log2n	(Why?	*hint:	think	about	the	case	of	an	AVL	with	all	levels	full,	except	the	last	one	that	has	only	a	single	element);	AVLs	are	the	fastest
in	practice	for	searching	elements,	but	the	rotation	of	subtrees	for	self-balancing	is	costly;	meanwhile,	RBTs	provide	faster	insertions	and	deletions	because	there	are	no	rotations;	Splay	trees	don’t	need	to	store	any	bookkeeping	data.	Useful	Links	10.Heaps	A	min-heap	is	a	binary	tree	where	each	node	has	the	property	that	its	value	is	bigger	or	equal
to	its	parent’s	value:	val[par[x]]	1	is	[k/2]	(where	[x]	is	the	integer	part	of	x)	and	its	children	are	2*k	and	2*k+1;	an	alternative	of	a	priority	queue	are	set,	ordered_map	(in	C++)	or	any	other	ordered	structure	that	can	easily	permit	the	access	to	the	minimum/maximum	element;	the	root	is	prioritized,	so	the	time	complexity	of	its	access	is	O(1),
insertion/deletion	are	done	in	O(log	n);	creating	a	heap	is	done	in	O(n);	heapsort	in	O(n*log	n).	Useful	Links	11.Tries	A	trie	is	an	efficient	information	reTRIEval	data	structure.	Also	known	as	a	prefix	tree,	it	is	a	search	tree	which	allows	insertion	and	searching	in	O(L)	time	complexity,	where	L	is	the	length	of	the	key.	If	we	store	keys	in	a	well	balanced
BST,	it	will	need	time	proportional	to	L	*	log	n,	where	n	is	the	number	of	keys	in	the	tree.	That	way,	a	trie	is	a	way	faster	data	structure	(with	O(L))	compared	to	a	BST,	but	the	penalty	is	on	the	trie	storage	requirements.	What	are	they	used	for?	A	trie	is	mostly	used	for	storing	strings	and	their	values.	One	of	its	coolest	application	is	the	typing
autocomplete	&	autosuggestions	in	the	Google	search	bar.	A	trie	is	the	best	choice	because	it	is	the	fastest	option:	a	faster	search	is	more	valuable	than	the	storage	saved	if	we	didn’t	use	a	trie.	Ortographical	autocorrection	of	typed	words	is	also	done	using	a	trie,	by	looking	for	the	word	in	the	dictionary	or	maybe	for	other	instances	of	it	in	the	same
text.	Properties	it	has	a	key-value	association;	the	key	is	usually	a	word	or	a	prefix	of	it,	but	it	can	be	any	ordered	list;	the	root	has	an	empty	string	as	a	key;	the	length	difference	between	a	node’s	value	and	its	children’s	values	is	1;	that	way,	the	root’s	children	will	store	a	value	of	length	1;	as	a	conclusion,	we	can	say	that	a	node	x	from	a	level	k	has	a
value	of	length	k;	as	we’ve	said,	the	time	complexity	of	insert/search	operations	is	O(L),	where	L	is	the	length	of	the	key,	which	is	way	faster	than	a	BST’s	O(log	n),	but	comparable	to	a	hashtable;	space	complexity	is	actually	a	disadvantage:	O(ALPHABET_SIZE*L*n).	Useful	Links	Medium:	Trying	to	understand	tries	GeeksforGeeks:	Tries	12.	Segment
Trees	A	segment	tree	is	a	full	binary	tree	that	allows	answering	to	queries	efficiently,	while	still	easily	modifying	its	elements.	Each	element	on	index	i	in	the	given	array	represents	a	leaf	labeled	with	the	[i,	i]	interval.	A	node	having	its	children	labeled	[x,	y],	respectively	[y,	z],	will	have	the	[x,	z]	interval	as	a	label.	Therefore,	given	n	elements	(0-
indexed),	the	root	of	the	segment	tree	will	be	labeled	with	[0,	n-1].	What	are	they	used	for?	They	are	extremely	useful	in	tasks	that	can	be	solved	using	Divide	&	Conquer	(first	Algorithms	concept	that	we	are	going	to	discuss)	and	also	might	require	updates	on	their	elements.	That	way,	while	updating	the	element,	any	interval	containing	it	is	also
modified,	thus	the	complexity	is	logarithmic.	For	instance,	the	sum/maximum/minimum	of	n	given	elements	are	the	most	common	applications	of	segment	trees.	Binary	search	can	also	use	a	segment	tree	if	element	updates	are	ocurring.	Properties	being	a	binary	tree,	a	node	x	will	have	2*x	and	2*x+1	as	children	and	[x/2]	as	a	parent,	where	[x]	is	the
integer	part	of	x;	one	efficient	method	of	updating	a	whole	range	in	a	segment	tree	is	called	“Lazy	Propagation”	and	it	is	also	done	in	O(log	n)	(see	links	below	for	the	implementation	of	the	operations);	they	can	be	k-dimensional	:	for	example,	having	q	queries	of	finding	the	sum	of	given	submatrices	of	one	matrix,	we	can	use	a	2-dimensional	segment
tree;	updating	elements/ranges	require	O(log	n)	time;	answering	to	a	query	is	constant	(O(1));	the	space	complexity	is	linear,	which	is	a	BIG	advantage:	O(4*n).	Useful	Links	13.	Fenwick	Trees	A	fenwick	tree,	also	known	as	a	binary	indexed	tree	(BIT),	is	a	data	structure	that	is	also	used	for	efficient	updates	and	queries.	Compared	to	Segment	Trees,
BITs	require	less	space	and	are	easier	to	implement.	What	are	they	used	for?	BITs	are	used	to	calculate	prefix	sums	—	the	prefix	sum	of	the	element	on	the	ith	position	is	the	sum	of	the	elements	from	the	first	position	to	the	ith.	They	are	represented	using	an	array,	where	every	index	is	represented	in	the	binary	system.	For	instance,	an	index	10	is
equivalent	to	an	index	2	in	the	decimal	system.	Properties	the	construction	of	the	tree	is	the	most	interesting	part:	firstly,	the	array	should	be	1-indexed;	to	find	the	parent	of	the	node	x,	you	should	convert	its	index	x	to	the	binary	system	and	flip	the	right-most	significant	bit;	ex.	the	parent	of	node	6	is	4;	6	=	1*2²+1*2¹+0*2⁰	=>	1"1"0	(flip)=>	100	=
1*2²+0*2¹+0*2⁰	=	4;	finally,	ANDing	elements,	each	node	should	contain	an	interval	that	can	be	added	to	the	prefix	sum	(more	about	the	construction	and	implementation	in	the	links	below);	the	time	complexity	is	still	O(log	n)	for	updates	and	O(1)	on	queries,	but	the	space	complexity	is	even	a	greater	advantage:	O(n),	compared	to	segment	tree’s
O(4*n).	Useful	Links	Tushar	Roy:	BIT	GeeksforGeeks:	BIT	CP	Algorithms:	BIT	14.	Disjoint	Set	Union	We	are	given	n	elements,	each	of	them	representing	a	separate	set.	Disjoint	Set	Union	(DSU)	permits	us	to	do	two	operations:	UNION	—	combine	any	two	sets	(or	unify	the	sets	of	two	different	elements	if	they’re	not	from	the	same	set);	FIND	—	find
the	set	an	element	comes	from.	What	are	they	used	for?	DSUs	are	very	important	in	graph	theory.	You	could	check	if	two	vertices	come	from	the	same	connected	component	or	maybe	even	unify	two	connected	components.	Let’s	take	the	example	of	cities	and	towns.	Since	neighbour	cities	with	demographical	and	economical	growth	are	expanding,
they	can	easily	create	a	metropolis.	Therefore,	two	cities	are	combined	and	their	residents	live	in	the	same	metropolis.	We	can	also	check	what	city	a	person	lives	in,	by	calling	the	FIND	function.	Properties	they	are	represented	using	trees;	once	two	sets	are	combined,	one	of	the	two	roots	becomes	the	main	root	and	the	parent	of	the	other	root	is	one
of	the	other	tree’s	leaves;	one	kind	of	practical	optimization	is	the	compression	of	trees	by	their	height;	that	way,	the	union	is	made	by	the	biggest	tree	to	easily	update	both	of	their	data	(see	implementation	below);	all	operations	are	done	in	O(1)	time.	Useful	links	GeeksforGeeks:	DSU	CP	Algorithms:	DSU	Codeforces	Problem	Set	15.	Minimum
Spanning	Trees	Given	a	connected	and	undirected	graph,	a	spanning	tree	of	that	graph	is	a	subgraph	that	is	a	tree	and	connects	all	the	nodes	together.	A	single	graph	can	have	many	different	spanning	trees.	A	minimum	spanning	tree	(MST)	for	a	weighted,	connected	and	undirected	graph	is	a	spanning	tree	with	weight	(cost)	less	than	or	equal	to	the
weight	of	every	other	spanning	tree.	The	weight	of	a	spanning	tree	is	the	sum	of	weights	given	to	each	edge	of	the	spanning	tree.	What	are	they	used	for?	The	MST	problem	is	an	optimization	problem,	a	minimum	cost	problem.	Having	a	network	of	routes,	we	can	consider	that	one	of	the	factors	that	influence	the	establishment	of	a	national	route
between	n	cities	is	the	minimum	distance	between	two	adjacent	cities.	That	way,	the	national	route	is	represented	by	the	MST	of	the	roads	network’s	graph.	Properties	being	a	tree,	an	MST	of	a	graph	with	n	vertices	has	n-1	edges;	it	can	be	solved	using:	*	Prim’s	Algorithm	—	best	option	for	dense	graphs	(graphs	with	n	nodes	and	the	number	of	edges
is	close	to	n(n-1)/2);	*	Kruskal’s	Algorithm	—	mostly	used;	it	is	a	Greedy	algorithm	based	on	Disjoint	Set	Union	(we	are	going	to	discuss	about	it	too);	the	time	complexity	of	building	it	is	O(n	log	n)	or	O(n	log	m)	for	Kruskal	(it	depends	on	the	graph)	and	O(n²)	for	Prim.	Useful	Links	CP	Algorithms:	MST	MST	Tutorial	II.	Algorithms	1.	Divide	and	Conquer
Divide	and	Conquer	(DAC)	is	not	a	specific	algorithm	itself,	but	an	important	category	of	algorithms	that	needs	to	be	understood	before	diving	into	other	topics.	It	is	used	to	solve	problems	that	can	be	divided	into	subproblems	that	are	similar	to	the	original	problem,	but	smaller	in	size.	DAC	then	recursively	solves	them	and	finally	merges	the	results
to	find	the	solution	of	the	problem.	It	has	three	stages:	Divide	—	the	problems	into	subproblems;	Conquer	—	the	subproblems	by	using	recursion;	Merge	—	the	subproblems’	results	into	the	final	solution.	What	is	it	used	for?	One	practical	application	of	DAC	is	parallel	programming	using	multiple	processors,	so	the	subproblems	are	executed	on
different	machines.	DAC	is	the	base	of	many	algorithms	such	as	Quick	Sort,	Merge	Sort,	Binary	Search	or	fast	multiplication	algorithms.	Properties	each	DAC	problem	can	be	written	as	a	recurrence	relation;	so,	it	is	essential	to	find	the	basic	case	that	stops	the	recursion;	its	complexity	is	T(n)=D(n)+C(n)+M(n),	meaning	that	every	stage	has	a
different	complexity	depending	on	the	problem.	Useful	Links	Divide	and	Conquer	Implementation	GeeksforGeeks:	DAC	Brilliant:	DAC	2.	Sorting	Algorithms	A	sorting	algorithm	is	used	to	rearrange	given	elements	(from	an	array	or	list)	according	to	a	comparison	operator	on	the	elements.	When	we	refer	to	a	sorted	array,	we	usually	think	of	ascending
order	(the	comparison	operator	is	‘

