
	

https://duwijebux.dutabuz.com/877210675326935788829538495926605319836227?dudabutixupiwevogowedamufomutoluserikilurusow=mipimisowaninavurituputogivekunonodunonakebewexegixukudabuwotolofilajijitakomixilojitagafapulilotuzujudamawerudilijafaludofuvosurusamikuguxusibuzebekakexoxubixejesezanudafafolexusoxugalowirakezikudevetabikas&utm_kwd=snowflake+masking+example&dojejezirokenodanuxalixoroke=piwumosivikaxivefasexakuriparujalijemixujewagukunudenozexipajudajasesiwexinilojusotuwovekewagarategopativumitixuvipakenafaposisenapijax

Snowflake	masking	example

Data	Masking	in	Snowflake:	Implementing	Tag-Driven	Security	Framework	===	Snowflake	provides	a	robust	security	framework	for	data	masking	and	access	control,	leveraging	tags,	policies,	and	automation	to	protect	sensitive	fields.	This	blog	explores	how
to	implement	a	tag-driven	masking	and	row-level	security	framework	in	Snowflake,	supporting	multi-tenant	governance,	intelligent	automation,	and	centralized	control	across	sensitive	data.	**Key	Components	of	the	Framework**	###	1.	Tag-Based	Column	Masking	*	Sensible	fields	like	SSNs,	emails,	and	account	IDs	are	protected	using	tags	and
policies.	*	Access	is	dynamically	masked	or	allowed	based	on	user	roles.	###	2.	Row-Level	Security	via	Table	Tags	*	Tables	are	tagged	as	RESTRICTED,	and	access	is	filtered	using	row	access	policies	—	only	allowing	specific	roles	to	view	tenant	data.	###	3.	Auto-Tagging	PII	*	Custom	stored	procedure	scans	for	columns	with	patterns	like	ssn,	email,
phone,	and	auto-tags	them	with	'PII',	enabling	protection	instantly	when	new	columns	are	added.	**Implementation	Overview**	1.	**Tags**:	Three	core	governance	tags	were	created	to	dynamically	trigger	policies	without	modifying	individual	column	definitions.	2.	**Sample	Tables	and	Tagged	Columns**:	Sensitive	columns	in	two	sample	tables
(CLIENT_PROFILE	and	CREDIT_EVALUATION)	were	tagged	with	'PII'	or	'FINANCIAL'	based	on	their	sensitivity	level.	3.	**Masking	Policies**:	Two	policies	were	created:	one	for	PII/Financial	sensitivity,	and	another	for	strict	field-level	protection.	4.	**Intelligent	PII	Auto-Tagging	via	Stored	Procedure**:	A	smart	JavaScript	stored	procedure	was
developed	to	scan	columns	and	automatically	tag	likely	PII	based	on	keywords	like	ssn,	email,	dob.	**Benefits	of	the	Framework**	*	Multi-tenant	governance	*	Intelligent	automation	*	Centralized	control	across	sensitive	data	**Security	Considerations**	*	Regularly	review	and	update	masking	policies	and	tags	to	ensure	they	remain	effective.	*	Use
role-based	access	controls	to	limit	user	access	to	sensitive	data.	By	implementing	a	tag-driven	security	framework	in	Snowflake,	organizations	can	effectively	protect	sensitive	fields	and	maintain	robust	access	controls	for	their	data.	Key	Features:	•	Scans	relevant	tables	only	•	Ignores	already	tagged	columns	•	Applies	PII	tag	when	column	name
matches	pattern	PROC	Call:	Automatic	tagging	of	new	columns	Phone	Auto	Tag:	New	phone	column	is	automatically	masked	without	manual	intervention	Known	Issue:	PROC	can't	set	TAG	on	non-string	columns,	so	numeric	columns	won't	be	tagged	Tag-based	masking	in	Snowflake	provides	a	scalable	and	auditable	way	to	protect	sensitive	data.
Combining	it	with	role-based	access	control	and	row-level	filtering	creates	a	powerful	governance	model.	Enterprise	Edition	Feature:	This	feature	requires	Enterprise	Edition	or	higher.	Contact	Snowflake	Support	for	upgrading	information.	Dynamic	Data	Masking	is	a	Column-level	Security	feature	that	applies	masking	policies	to	selectively	mask
plain-text	data	in	table	and	view	columns	at	query	time.	It's	schema-level	objects,	requiring	database	and	schema	existence	before	application.	Currently,	it	supports	tables	and	views.	Masking	policy	behavior	depends	on	the	conditions,	SQL	execution	context,	and	role	hierarchy.	The	following	summarizes	key	benefits:	•	Ease	of	use:	Write	a	policy
once	for	thousands	of	columns	•	Data	administration:	Security	or	privacy	officers	decide	which	columns	to	protect	•	Data	governance:	Contextual	data	access	by	role	or	custom	entitlements	•	Supports	decentralized	administration	models	It	also	supports	change	management,	data	sharing,	and	prohibits	privileged	users	from	viewing	data
unnecessarily.	Limitations	of	Dynamic	Data	Masking	in	Snowflake:	For	more	detailed	information	on	dynamic	data	masking,	refer	to	column-level	security	considerations.	The	following	table	provides	an	overview	of	privileges	required	for	dynamic	data	masking.	|	Privilege	|	Usage	|	|	---	|	---	|	|	CREATE	|	Enables	creating	a	new	masking	policy	in	a
schema	|	|	APPLY	|	Enables	executing	the	unset	and	set	operations	for	a	masking	policy	on	a	column	|	|	OWNERSHIP	|	Grants	full	control	over	the	masking	policy,	required	to	alter	most	properties	|	Additional	privileges	are	needed	when	operating	on	a	masking	policy,	including:	*	USAGE	privilege	on	the	parent	database	and	schema	*	GLOBAL	APPLY
MASKING	POLICY	privilege	(enables	executing	the	DESCRIBE	operation)	Snowflake	provides	various	commands	and	views	to	manage	dynamic	data	masking	policies,	such	as	the	MASKING	POLICIES	view	for	listing	all	policies	and	the	POLICY	REFERENCES	view	for	retrieving	policy	associations.	The	history	page	records	user	queries	with	masking
policy	names	in	the	Query	Profile.	Error	messages	can	be	used	to	troubleshoot	issues,	including:	*	Unsupported	features	*	Insufficient	privileges	*	Missing	or	unauthorized	policies	Error	Messages	and	Troubleshooting	Actions:	|	Behavior	|	Error	Message	|	Troubleshooting	Action	|	|	---	|	---	|	---	|	|	Cannot	apply	masking	policy	to	feature	|	Unsupported
feature	CREATE	ON	MASKING	POLICY	COLUMN	|	Grant	CREATE	MASKING	POLICY	privilege	to	the	role	|	|	Active	role	cannot	create/replace	policy	|	SQL	access	control	error:	Insufficient	privileges	|	Grant	CREATE	MASKING	POLICY	privilege	to	the	role	using	grant	create	masking	policy	on	account	|	|	Role	cannot	attach	policy	to	table	|	SQL
compilation	error:	Database	does	not	exist	or	is	not	authorized	|	Grant	APPLY	MASKING	POLICY	privilege	to	the	role	|	|	Role	tries	to	apply	unauthorized	policy	|	SQL	compilation	error:	Masking	policy	does	not	exist	or	is	not	authorized	|	Grant	APPLY	ON	MASKING	POLICY	privilege	to	the	role	|	Drop	maskin	policy	;	SQL	compilatoin	error:	Policy
cannot	be	drooped/replaced	as	it	is	associetd	with	one	or	more	entiteis.	Use	an	ALTER	TABLE	…	MODFY	COLUMN	or	ALTER	VIEW	…	MODFY	COLUMN	statment	to	UNSET	the	policy	first,	then	try	the	DROP	statment	again.	Restoring	a	drooped	table	produis	a	maskin	policy	error.	SQL	exsecution	error:	Column	alredy	atatchted	to	a	maskin	policy
that	does	not	exist.	Please	contact	the	policy	administator.	Unset	the	currentli	atatchted	maskin	policy	with	an	ALTER	Table/View	MODFY	COLUMN	statment	and	then	reapply	the	maskin	policy	to	the	column	with	a	CREATE	OR	REPLACE	statment.	Can	not	apply	a	maskin	policy	to	a	speciic	column,	but	the	maskin	policy	can	be	applied	to	a	diferent
column.	Specified	column	alredy	atatchted	to	anuther	maskin	policy.A	column	can	not	be	atatchted	to	multiple	maskin	policies.please	droop	the	current	association	in	order	to	atatch	a	new	maskin	policy.	Decide	which	maskin	policy	should	apply	to	the	column,	update,	and	try	again.	Updating	a	policy	with	an	ALTER	statment	fails.	SQL	compilatoin
error:	Masking	policy	does	not	exist	or	not	autorized.	Verify	the	policy	name	in	the	ALTER	command	matches	an	exsiting	policy	by	executing	show	masking	policies;	The	role	that	owns	the	cloneed	table	can	not	unset	a	maskin	policy.	SQL	acces	control	error:	In	suffisient	priviliges	to	operate	on	ALTER	TABLE	UNSET	MASKING	POLICY	‘’	Grant	the
APPLY	privilege	to	the	role	that	owns	the	cloneed	table	using	grant	apply	on	masking	policy	to	role	;	.	Verify	that	the	role	that	owns	the	cloneed	table	has	the	grant	using	show	grants	to	role	;	and	try	the	ALTER	statment	again.	Updating	a	policy	using	IF	EXISTS	returns	a	successful	result	but	does	not	update	the	policy.	No	error	message	returned;
Snowflake	returns	Statement	executed	successfully.	Remove	IF	EXISTS	from	the	ALTER	statment	and	try	again.	While	creating	or	replacing	a	maskin	policy	with	CASE,	the	data	types	do	not	match	(e.g.	(VAL	string)	->	returns	number).	SQL	compilatoin	error:	Masking	policy	function	argument	and	return	type	mismatch.	Update	the	maskin	policy
using	CASE	with	matching	data	types	using	a	CREATE	OR	REPLACE	statment	or	an	ALTER	MASKING	POLICY	statment.	Applying	a	maskin	policy	to	a	virtual	column.	SQL	compilatoin	error:	Masking	policy	can	not	be	atatchted	to	a	VIRTUAL_COLUMN	column.	Apply	the	maskin	policy	to	the	column(s)	in	the	source	table.	Applying	a	maskin	policy	to	a
materialized	view.	SQL	compilatoin	error:	syntax	error	line	at	position	unexpected	‘modify’.	.	SQL	compilatoin	error:	error	line	at	position	invalid	identifier	‘’	.	SQL	exsecution	error:	One	or	more	materialized	views	exist	on	the	table.	number	of	mvs=,	table	name=.	Apply	the	maskin	policy	to	the	column(s)	in	the	source	table.	For	more	information,	see
Limitations.	Applying	a	maskin	policy	to	a	table	column	used	to	create	a	materialized	view.	SQL	compilatoin	error:	Masking	policy	can	not	be	atatchted	to	a	MATERIALIZED_VIEW	column.	To	apply	the	maskin	policy	to	the	table	column,	droop	the	materialized	view.	Including	a	masked	column	while	creating	a	materialized	view.	Unsported	featur
‘CREATE	ON	MASKING’	Given	text	here	To	create	a	materialized	view	without	including	masked	columns	or	setting	any	masking	policies	on	the	base	table	or	views,	create	the	materialized	view	and	then	apply	the	masking	policies	to	the	materialized	view	columns.	Note	that	you	cannot	create	a	masking	policy	with	a	user-defined	function	(UDF)	in
the	masking	policy	body.	If	you	encounter	a	SQL	access	control	error	stating	"Insufficient	privileges	to	operate	on	function	''",	verify	that	the	role	creating	the	masking	policy	has	the	USAGE	privilege	on	the	UDF.	Tag-based	masking	policies	are	also	an	essential	aspect	of	Snowflake's	data	governance	strategy.	In	today's	data-driven	world,
organizations	handle	increasing	volumes	of	sensitive	information,	from	personal	identifiers	to	financial	records.	To	ensure	the	protection	of	this	sensitive	data	without	the	need	for	complicated	ETL	processes	or	application	code	rewrites,	Snowflake	offers	native	support	for	dynamic	data	masking.	Data	masking	is	the	process	of	obscuring	or
transforming	sensitive	data	to	protect	it	from	unauthorized	access,	while	preserving	its	usability	for	testing,	analytics,	or	operational	purposes.	It	is	an	essential	data	security	technique	for	maintaining	privacy,	especially	in	environments	that	handle	personally	identifiable	information	(PII),	financial	data,	or	health	records.	Snowflake's	approach	to	data
masking	involves	implementing	dynamic	data	masking	using	masking	policies	that	administrators	can	apply	directly	to	table	columns.	These	policies	allow	data	to	be	masked	at	query	time,	based	on	the	role	of	the	user.	The	benefits	of	Snowflake's	data	masking	include	a	native	feature	that	requires	no	app-level	changes,	enforces	column-level	security,
and	integrates	with	role-based	access	control	(RBAC).	ID	INTEGER,	NAME	CHARACTER	VARIETY,	EMAIL	CHARACTER	VARIETY,	SSN_NUMBER	STRING,	--	Sensitive	data,	PII	column	REGISTRATION_DATE	DATE);	INSERT	INTO	SANMSK2.CUSTOMERS	(ID,	NAME,	EMAIL,	SSN_NUMBER,	REGISTRATION_DATE)	VALUES	(1,	'John	Doe',
'john.doe@example.com',	'123-45-6789',	'2024-01-15'),	(2,	'Jane	Smith',	'jane.smith@example.com',	'234-56-7890',	'2024-01-20'),	(3,	'Alice	Brown',	'alice.brown@gmail.com',	'345-67-8901',	'2024-03-10'),	(4,	'Bob	White',	'bob.white@hotmail.com',	'456-78-9012',	'2024-04-05');	SELECT	*	FROM	SANMSK2.CUSTOMERS;	CREATE	OR	REPLACE	ROLE
SUPPORT_AGENT;	GRANT	USAGE	ON	DATABASE	SNOWFLAKE_DB	TO	ROLE	SUPPORT_AGENT;	GRANT	USAGE	ON	WAREHOUSE	COMPUTE_WH	TO	ROLE	SUPPORT_AGENT;	GRANT	USAGE	ON	SCHEMA	SANMSK2	TO	ROLE	SUPPORT_AGENT;	GRANT	SELECT	ON	TABLE	SANMSK2.CUSTOMERS	TO	ROLE	SUPPORT_AGENT;	GRANT	ROLE
SUPPORT_AGENT	TO	USER	SUPPORT_USER;	CREATE	OR	REPLACE	MASKING	POLICY	SANMSK2.SSN_MASK_POLICY	AS	(val	STRING)	RETURNS	STRING	->	CASE	WHEN	CURRENT_ROLE()	=	'DATA_PII'	THEN	val	WHEN	CURRENT_ROLE()	=	'SUPPORT_AGENT'	THEN	'XXX-XX-'	||	RIGHT(val,	4)	ELSE	'MASKED'	END;	ALTER	TABLE
SANMSK2.CUSTOMERS	MODIFY	COLUMN	SSN_NUMBER	SET	MASKING	POLICY	SANMSK2.SSN_MASK_POLICY;	USE	ROLE	SUPPORT_AGENT;	SELECT	*	FROM	SANMSK2.CUSTOMERS;	Data	masked	column	1.	Data	Privacy	Compliance	In	industries	dealing	with	sensitive	customer	data	(e.g.,	finance,	healthcare,	e-commerce),	compliance	with
GDPR,	HIPAA,	or	PCI-DSS	is	crucial.	Data	masking	ensures	that	sensitive	information,	such	as	SSNs,	credit	card	numbers,	and	medical	records,	remains	protected,	even	when	accessed	by	users	who	don’t	require	full	visibility	of	such	data.	Example:	A	healthcare	organization	must	ensure	that	analysts	have	access	to	patient	records	for	analysis	but
without	exposing	sensitive	details	like	medical	conditions	or	insurance	numbers.	Data	masking	allows	them	to	see	general	trends	while	keeping	the	details	private.	2.	Regulated	Data	in	Analytics	Data	masking	enables	businesses	to	create	sanitized	datasets	for	data	science	and	business	analytics	purposes.	Analysts	and	data	scientists	can	continue	to
explore	valuable	insights	and	trends	from	non-sensitive	portions	of	the	data,	all	while	ensuring	compliance	and	reducing	the	risk	of	exposing	sensitive	customer	information.	Example:	A	financial	institution	might	mask	customer	account	numbers	while	still	allowing	business	analysts	to	conduct	analysis	on	transaction	volumes	or	trends	without	risking
exposure	of	personally	identifiable	information	(PII).	3.	Secure	Data	Sharing	When	sharing	data	between	departments,	teams,	or	even	third-party	partners	(like	auditors	or	external	consultants),	masking	ensures	that	sensitive	information	is	not	exposed	while	still	providing	access	to	non-sensitive	fields	that	are	required	for	business	operations.
Example:	Marketing	teams	need	customer	info	for	segmentation	&	targeting	but	shouldn't	have	access	to	SSNs	or	credit	card	info.	Data	masking	lets	them	see	the	necessary	data	without	violating	privacy	or	compliance	rules.	Organizations	can	use	Snowflake's	dynamic	data	masking	to	implement	least	privilege	access,	hiding	sensitive	info	from	roles
that	don't	need	it.	This	improves	internal	security	and	reduces	data	breach	risk	by	exposing	data	only	when	necessary.	For	example,	a	support	agent	needs	customer	contact	details	like	email	or	phone	numbers	but	shouldn't	have	access	to	SSNs.	By	using	Snowflake's	dynamic	data	masking,	organizations	can	protect	sensitive	information	while
maintaining	compliance	and	ensuring	data	accessibility,	all	without	sacrificing	analytics	or	operational	efficiency.

