
	

https://mavanofepufifat.bebopim.com/749581363326748589706305149115303959652379?polukizatokejusivalowinigexagedavekowawowowezolesixifozidimonujipavolixidulutawexoxe=ziwujifaxegajoxerikifewonibisazavavelanepanapudojalowurefowajebokoxodajoritajogigibakakosaribalipuzenobijigawidilikelopizosunilomuritekowerupagepesuleloxafusinikabufegofajuxevobuwogipedifapazewaxiwupawopus&utm_kwd=dart+list+methods&zijuxagatukugikekapowewetemodofigawadixozuxenazeliwosobunobotitunusixurejerozetadigutevagomi=webazonugitoluziwoxilodasigesegefepizitepozibifipanazapejebejetabikexumavuledimowopuxoriwikitinozasi

Dart	list	methods

Dart	Fundamentals:	Getters	and	Setters,	Essential	List/Array	Methods	---	As	I	continue	to	explore	Flutter,	I've	been	focusing	on	grasin'	the	Dart	language	basics.	One	area	that's	been	puzzlin'	me	is	array	methods.	As	a	web	developer	with	a	JS	background,	I	found	that	Dart's	list/array	methods	are	quite	similar.
In	this	post,	I'll	cover	the	essentials	for	my	own	reference	and	anyone	else	who	might	be	in	the	same	boat.	**Prerequisites**	To	follow	along,	you	should	have	some	basic	knowledge	of	Flutter/Dart	OOP.	You	can	use	DartPad,	a	playground	for	Dart,	to	experiment	with	the	code	examples.	**Getting	Started**	Let's	start	with	a	simple	example:	```dart	void
main()	{	List	fruits	=	['mangoes',	'bananas',	'pears',	'oranges'];	print(fruits);	}	```	Notice	how	we've	used	type	annotation	for	the	`fruits`	variable?	This	improves	readability	and	helps	with	IntelliSense	in	code	editors	like	Visual	Studio	Code.	**Type	Safety**	The	above	code	is	type-safe,	meaning	you	can	only	assign	strings	to	the	`fruits`	variable.	If	you
try	to	add	items	of	different	types,	it	will	still	work,	but	using	`List`	would	allow	that.	**const	and	final**	Let's	explore	what	happens	when	we	mark	our	list	as	either	`final`	or	`const`.	Try	changing	the	code	to:	```dart	void	main()	{	final	List	fruits	=	['mangoes',	'bananas',	'pears',	'oranges'];	fruits.add('apples');	print(fruits);	}	```	Run	it	and	see	what
happens.	Marking	as	`final`	means	we	can't	reassign	the	variable,	but	we	can	still	mutate	the	list.	Now,	let's	try	something	else:	```dart	void	main()	{	final	List	fruits	=	['mangoes',	'bananas',	'pears',	'oranges'];	fruits	=	[...fruits,	'apples'];	print(fruits);	}	```	This	will	give	you	an	error.	To	make	the	list	immutable,	use	the	`const`	keyword:	```dart	void
main()	{	final	List	fruits	=	const	['mangoes',	'bananas',	'pears',	'oranges'];	//fruits.add('apples');	print(fruits);	}	```	There	are	two	ways	to	implement	this.	I'll	cover	the	differences	in	more	detail	later.	**Creating	Lists**	We've	already	seen	one	way	of	creating	lists	using	the	`List()`	constructor.	Let's	explore	a	few	more	methods:	```dart	void	main()	{	var
list	=	List(5);	print(list);	//output	-	[null,	null,	null,	null,	null]	}	```	This	creates	a	list	of	length	5	with	null	as	its	items/values.	Next	up:	essential	Dart	list/array	methods!	It	seems	that	you	are	trying	to	learn	about	Dart's	built-in	list	operations.	Let's	take	a	look	at	some	of	the	most	commonly	used	methods	and	properties.	Firstly,	`List.filled()`	is	used	to
create	a	list	filled	with	a	specified	value	up	to	a	certain	length.	You	can	also	specify	whether	the	list	should	be	growable	or	not.	For	example:	`var	list	=	List.filled(5,	"hello",	growable:	true);`.	Another	way	to	create	a	list	is	using	`List.generate()`,	which	takes	in	a	length	and	a	generator	function	that	returns	the	value	for	each	index.	This	method	also
accepts	an	optional	parameter	for	growability.	`List.from()`	creates	a	new	list	from	another	iterable,	and	it	also	has	an	optional	parameter	for	specifying	whether	the	resulting	list	should	be	growable	or	not.	Now	let's	talk	about	some	of	the	most	commonly	used	methods	on	lists:	-	`add()`:	adds	an	item	to	the	end	of	a	growable	list.	-	`remove()`:
removes	the	first	occurrence	of	an	object	from	a	growable	list.	If	there	are	duplicate	values,	it	will	only	remove	one	instance.	-	`removeAt()`:	removes	the	item	at	a	specified	index	in	a	growable	list.	-	`addAll()`:	adds	all	items	from	another	iterable	to	the	end	of	a	growable	list.	Some	other	methods	that	are	worth	mentioning	include:	-	`asMap()`:	returns
a	map	representation	of	the	list,	where	indices	are	keys	and	values	are	items.	-	`insert()`	and	`insertAll()`:	similar	to	`add()`	and	`addAll()`,	but	they	allow	you	to	specify	an	index	at	which	to	insert	the	item(s).	-	`getRange()`:	returns	an	iterable	containing	items	within	a	specified	range.	You	can	convert	this	to	a	list	using	`toList()`.	Lastly,	there's
`fillRange()`,	but	its	documentation	is	incomplete	in	your	snippet.	Given	article	text	here	void	main()	{	var	numbers	=	[30,10,22,45,24,88,1,37,100,0];	print(numbers.reduce((a,b)=>	a	+	b));	}	Dart	programming	language	features	a	list	class	that	provides	various	methods	for	manipulating	and	operating	on	lists.	Some	essential	methods	include	map,
which	applies	a	given	function	to	every	item	in	the	list,	followed	by	a	call	to	toList()	to	convert	it	back	into	a	list.	Another	method	is	forEach,	which	takes	each	item	in	the	list	and	applies	the	given	function	in	their	index	order.	Additionally,	there	are	methods	like	followedBy,	take,	and	others	that	can	be	used	to	manipulate	lists.	The	language	also
supports	getters	and	setters,	as	well	as	different	types	of	lists	such	as	fixed-length	and	growable	lists.	and	where,	the	element	is	in	the	list,	use	indexOf	or	lastIndexOf.	final	indexA	=	growableList.indexOf('A');	//	-1	(not	in	the	list)	final	firstIndexB	=	growableList.indexOf('B');	//	1	final	lastIndexB	=	growableList.lastIndexOf('B');	//	4	To	remove	an
element	from	the	growable	list,	use	remove,	removeAt,	removeLast,	removeRange	or	removeWhere.	growableList.remove('C');	growableList.removeLast();	print(growableList);	//	[G,	B,	X]	To	insert	an	element	at	position	in	the	list,	use	insert	or	insertAll.	growableList.insert(1,	'New');	print(growableList);	//	[G,	New,	B,	X]	To	replace	a	range	of	elements
in	the	list,	use	fillRange,	replaceRange	or	setRange.	growableList.replaceRange(0,	2,	['AB',	'A']);	print(growableList);	//	[AB,	A,	B,	X]	growableList.fillRange(2,	4,	'F');	print(growableList);	//	[AB,	A,	F,	F]	To	sort	the	elements	of	the	list,	use	sort.	growableList.sort((a,	b)	=>	a.compareTo(b));	print(growableList);	//	[A,	AB,	F,	F]	To	shuffle	the	elements	of
this	list	randomly,	use	shuffle.	growableList.shuffle();	print(growableList);	//	e.g.	[AB,	F,	A,	F]	To	find	the	first	element	satisfying	some	predicate,	or	give	a	default	value	if	none	do,	use	firstWhere.	bool	isVowel(String	char)	=>	char.length	==	1	&&	"AEIOU".contains(char);	final	firstVowel	=	growableList.firstWhere(isVowel,	orElse:	()	=>	'');	//	''	There
are	similar	lastWhere	and	singleWhere	methods.	A	list	is	an	Iterable	and	supports	all	its	methods,	including	where,	map,	whereType	and	toList.	Lists	are	Iterable.	Iteration	occurs	over	values	in	index	order.	Changing	the	values	does	not	affect	iteration,	but	changing	the	valid	indices—that	is,	changing	the	list's	length—between	iteration	steps	causes	a
ConcurrentModificationError.	This	means	that	only	growable	lists	can	throw	ConcurrentModificationError.	If	the	length	changes	temporarily	and	is	restored	before	continuing	the	iteration,	the	iterator	might	not	detect	it.	It	is	generally	not	allowed	to	modify	the	list's	length	(adding	or	removing	elements)	while	an	operation	on	the	list	is	being
performed,	for	example	during	a	call	to	forEach	or	sort.	Changing	the	list's	length	while	it	is	being	iterated,	either	by	iterating	it	directly	or	through	iterating	an	Iterable	that	is	backed	by	the	list,	will	break	the	iteration.	Lists	in	Dart	are	a	powerful	data	structure	that	can	store	multiple	values.	They	are	zero-based,	meaning	the	first	element	is	at	index
0,	and	you	can	access	or	modify	elements	using	subscript	notation	(`listName[index]`).	Lists	have	methods	to	add	or	remove	elements.	To	create	a	list,	you	simply	enclose	items	within	square	brackets:	`var	scores	=	[1,	3,	4,	2];`.	The	type	of	the	elements	in	this	example	is	inferred	as	integers	because	all	the	initial	values	are	integers.	Dart	will	also
infer	the	type	if	you	initialize	it	with	an	empty	list	like	`var	scores	=	[];`	but	this	would	make	it	dynamic,	losing	some	benefits	of	type	safety.	You	can	print	a	list	to	see	its	content	using	the	`print()`	function:	`void	main()	{	var	scores	=	[1,	3,	4,	2];	print(scores);	}`.	The	output	will	be	`[1,	3,	4,	2]`.	Elements	are	accessed	and	modified	using	their	index
within	square	brackets.	For	instance,	to	access	the	third	element	of	a	list	named	`scores`,	you	would	use	`scores[2]`.	To	add	an	item	at	the	end	of	a	list,	you	can	use	the	`add()`	method:	`scores.add(5);`.	This	operation	does	not	change	the	existing	elements'	positions	but	adds	a	new	one	at	the	end.	If	you	need	to	remove	an	element	from	a	list,	you	can
use	the	`remove()`	method.	For	example,	removing	number	1	from	the	scores	list	is	done	by	`scores.remove(1);`.	For	lists	that	should	not	be	reassigned	(like	if	they're	part	of	another	data	structure),	use	the	`final`	keyword:	`final	scores	=	[1,	3,	4,	2];`.	This	means	once	you've	set	its	value,	it	cannot	be	changed.	If	your	intention	is	to	make	a	list	truly
immutable,	use	the	`const`	keyword	instead	of	`final`:	`void	main()	{	const	scores	=	[1,	3,	4,	2];	scores.add(6);	}`.	However,	using	`const`	will	prevent	modifying	the	list	even	with	methods	like	`add()`	or	`remove()`,	resulting	in	an	error.	To	access	or	manipulate	elements	within	a	Dart	list,	several	properties	and	methods	are	available.	The	length
property	is	used	to	determine	the	number	of	elements	in	a	list,	as	demonstrated	by	`var	scores	=	[1,	3,	4,	2,	5];	print('Length:	${scores.length}');`.	To	access	specific	positions	or	elements	within	a	list,	you	can	use	the	first	and	last	properties.	For	example,	to	get	the	first	and	last	elements	of	a	list,	you	would	use	`print('First:	${scores.first}');`	and
`print('Last:	${scores.last}');`,	respectively.	Checking	if	a	list	is	empty	or	contains	any	elements	can	be	done	using	the	isEmpty	and	isNotEmpty	properties.	If	a	list	is	empty,	it	will	return	true	for	isEmpty	and	false	for	isNotEmpty.	For	iteration	over	list	elements,	both	for	and	for-in	loops	are	available	in	Dart.	The	traditional	for	loop	involves	keeping
track	of	an	index	variable	to	access	elements	at	specific	positions	within	the	list.	A	more	concise	approach	is	using	the	for-in	loop	that	directly	assigns	each	element	from	the	list	to	a	variable	during	each	iteration.	The	forEach	method	of	List	also	allows	executing	a	function	for	each	element	without	needing	to	manually	keep	track	of	indices	or	use
direct	assignment	in	loops,	as	shown	by	`scores.forEach((score)	=>	print(score));`.	Additionally,	Dart	supports	combining	multiple	lists	into	one	using	the	spread	operator	(...).	This	can	be	seen	in	examples	where	lower	and	upper	lists	are	combined	into	scores	list.	Lastly,	the	collection	if	can	be	used	to	conditionally	include	elements	within	a	list.	It
allows	for	dynamic	construction	of	lists	based	on	certain	conditions,	as	demonstrated	by	`var	greetings	=	[if	(bye)	'Good	Bye',	'Hi',	'Hi	there',];`.	This	feature	enables	more	flexible	and	dynamic	list	creation	in	Dart.	void	main()	{	var	numbers	=	[1,	2,	3];	var	scores	=	[0,	for	(var	number	in	numbers)	number	*	2];	print(scores);	}	List	is	one	of	four	types
of	collection	Dart	offers.	It	is	equivalent	to	Array	and	is	an	ordered	collection	of	items,	starting	with	index	0.	In	this	article,	we’ll	take	a	look	at	various	List	methods	that	may	not	be	used	frequently	but	are	very	useful	in	retrieving	data	for	unique	cases,	with	example	of	each.	sublist():	This	method	returns	a	new	list	containing	elements	from	index
between	start	and	end.	Note	that	end	element	is	exclusive	while	start	is	inclusive.	var	myList=	[1,2,3,4,5];	print(myList.sublist(1,3));	//	[2,3]	If	end	parameter	is	not	provided,	it	returns	all	elements	starting	from	start	till	length	of	the	list.print(myList.sublist(1));	//	[2,3,4,5]	shuffle():	This	method	re-arranges	order	of	the	elements	in	the	given	list
randomly.	myList.shuffle();	print('$myList');	//	[5,4,3,1,2]	reversed:	reversed	is	a	getter	which	reverses	iteration	of	the	list	depending	upon	given	list	order.	var	descList=	[6,5,4,3,2,1];	print(descList.reversed.toList());	//	[1,2,3,4,5,6]	var	ascList	=	[1,2,3,4,5,6];	print(ascList.reversed.toList());	//	[6,5,4,3,2,1]	asMap():	This	method	returns	a	map
representation	of	the	given	list.	The	key	would	be	the	indices	and	value	would	be	the	corresponding	elements	of	the	list.	List	sports	=	['cricket',	'football',	'tennis',	'baseball'];	Map	map	=	sports.asMap();	print(map);	//	{0:	cricket,	1:	football,	2:	tennis,	3:	baseball}	whereType():	This	method	returns	iterable	with	all	elements	of	specific	data	type.	Let’s
say	we	have	a	list	with	mix	data	such	as	String	and	int	and	we	just	want	to	retrieve	int	data	from	it,	then	we	would	use	whereType	method	as:	var	mixList	=	[1,	"a",	2,	"b",	3,	"c",	4,	"d"];	var	num	=	mixList.whereType();	print(num);	//	(1,	2,	3,	4)	getRange():	This	method	returns	elements	from	specified	range	[start]	to	[end]	in	same	order	as	in	the	given
list.	Note	that,	start	element	is	inclusive	but	end	element	is	exclusive.	var	myList	=	[1,	2,	3,	4,	5];	print(myList.getRange(1,4));	//	(2,	3,	4)	replaceRange():	This	method	helps	to	replace	/	update	some	elements	of	the	given	list	with	the	new	ones.	The	start	and	end	range	need	to	be	provided	alongwith	the	value	to	be	updated	in	that	range.	var	rList=
Given	article	text	here	List	methods	explained	var	rList	=	[0,1,10,3,4,5];	rList.replaceRange(2,3,	[10]);	print('$rList');	//	[0,	1,	10,	3,	4,	5]	firstWhere():This	method	returns	the	first	element	from	the	list	when	the	given	condition	is	satisfied.	var	firstList	=	[1,2,3,4,5,6];	print(firstList.firstWhere((i)	=>	i	<	4));	//	1	var	sList	=	['one',	'two',	'three',	'four'];
print(sList.firstWhere((i)	=>	i.length	>	3));	//	three	lastWhere()	returns	last	element	from	the	list	when	given	condition	is	met.	where()	returns	new	list	that	matches	the	condition.	singleWhere():This	method	returns	the	first	matching	element	from	the	list	when	there’s	an	exact	match.	var	mList	=	[1,2,3,4];	print(mList.singleWhere((i)	=>	i	==	3));	//	3
If	the	given	list	contains	a	duplicate,	then	singleWhere	method	retuns	an	exception.	In	that	case,	we	can	use	firstWhere	method	which	returns	the	first	matching	element	irrespective	of	repeating	/	duplicates	in	the	list.	var	sList	=	[1,	2,	3,	3,	4];	print(sList.singleWhere((i)	=>	i	==	3));	//	Bad	state:	Too	many	elements	print(sList.firstWhere((i)	=>	i	==
3));	//	3	fold():This	method	returns	a	single	value	by	iterating	all	elements	of	given	list	along	with	an	initialValue	,	ie,	if	we	want	sum	of	all	elements	or	product	of	all	elements,	then,	fold	helps	us	to	do	that.	var	lst	=	[1,2,3,4,5];	var	res	=	lst.fold(5,	(i,	j)	=>	i	+	j);	print('res	is	${res}');	//	res	is	20	reduce():This	method	is	very	similar	to	fold	and	returns	a
single	value	by	iterating	all	elements	of	given	list.	Only	difference	is,	this	method	doesn’t	take	any	initialValue	and	the	given	list	should	be	non-empty.	var	lst	=	[1,2,3,4,5];	var	res	=	lst.reduce((i,	j)	=>	i	+	j);	print('res	is	${res}');	//	res	is	15	followedBy():This	method	appends	new	iterables	to	the	given	list.	var	sportsList	=	['cricket',	'tennis',	'football'];
print(sportsList.followedBy(['golf',	'chess']).toList());	//	[cricket,	tennis,	football,	golf,	chess]	any():This	method	returns	a	boolean	depending	upon	whether	any	element	satisfies	the	condition	or	not.	print(sportsList.any((e)	=>	e.contains('cricket')));	//	true	every():This	method	returns	a	boolean	depending	upon	whether	all	elements	satisfies	the
condition	or	not.	print(sportsList.every((e)	=>	e.startsWith('a')));	//	false	take():This	method	returns	iterable	starting	from	index	0	till	the	count	provided	from	given	list.	print(sportsList.take(2));	//	(cricket,	tennis)	skip():This	method	ignores	the	elements	starting	from	index	0	till	count	and	returns	remaining	iterable	from	given	list.
print(sportsList.skip(2));	//	(football)	last	element	from	a	given	list	gets	cleared	by	the	'clear'	method.	or	list.clear()	removes	all	items	from	the	list.

List	properties	and	methods	in	dart.	List	all	methods	in	dart.	Dart	where	method.	Dart	list	example.

