
	

https://zavogeran.nurepikis.com/747161873154966544215995833724268627214914?derozowejujuwulibilesijazedimixemomagebegusufolaxob=kiwoxoledenatovavejuloronawokotibuwinepesasogumavaralanotalubixiwezojaburirobumirunubasigemowenigeweziruvadomulukomutofonugomukaxumevogamonebavifusugafakadabajowaxedulubitofapuxurilikojasokavifatapenexaxikoza&utm_term=testing+basic+concepts&lalibotubajinotowekejujurerazafolevejogakepek=tefazogozukomowodonetitoberesorodupamarazufosukulifenigenexokumotiworidexojisoteroruludasiliramojinomifu

Testing	basic	concepts

Software	testing	is	a	critical	process	in	software	development	that	ensures	a	software	application	meets	technical	and	user	requirements.	It	involves	verifying	and	validating	the	application's	functionality,	performance,	and	security	to	identify	bugs	and	errors.	Effective	software	testing	can	prevent	costly	errors,	financial	losses,	and	even	loss	of	human
life.	Learning	the	basics	of	software	testing	is	essential,	as	it	provides	a	solid	foundation	for	further	learning.	The	manual	to	automation	testing	course	offers	a	structured	approach	to	learn	software	testing.	Software	testing	can	be	divided	into	two	steps:	verification	and	validation.	Verification	checks	if	the	software	meets	its	intended	purpose,	while
validation	ensures	it	meets	customer	needs	and	requirements.	Poor	software	testing	can	have	severe	consequences,	including	financial	losses	and	human	harm.	Historical	examples	illustrate	the	importance	of	testing,	such	as	the	Therac-25	radiation	therapy	malfunction	in	1985,	which	resulted	in	three	deaths	and	three	injuries.	Other	notable
examples	include	China	Airlines	Airbus	A300	crash	in	1994,	which	killed	264	people,	and	a	software	bug	that	caused	U.S.	bank	accounts	to	be	credited	with	$920	million	in	1996.	Software	testing	can	be	categorized	into	several	types,	including	black	box	testing,	white	box	testing,	gray	box	testing,	and	alpha	testing.	These	types	of	testing	help	identify
bugs	and	errors	before	they	reach	production,	ensuring	the	application	is	stable	and	reliable.	Given	text	here	Software	testing	can	be	categorized	into	three	types:	Manual	Testing,	Automation	Testing,	and	different	forms	of	Black	Box	Testing.	Manual	Testing	is	a	manual	approach	where	testers	check	software	functionality	one	function	at	a	time	to
identify	defects.	Automation	Testing	uses	scripts	and	automated	tools	to	test	software	without	the	need	for	a	human	tester.	Black	Box	Testing	is	further	divided	into	three	categories:	White	Box	Testing	involves	testing	an	application's	internal	structure	and	workings,	allowing	testers	to	verify	correctness	at	a	code	level.	Gray	Box	Testing	combines
elements	of	Black	Box	and	White	Box	Testing,	with	testers	having	some	knowledge	of	the	internal	structure	but	not	complete	access.	Black	Box	Testing	has	low	granularity	and	is	often	performed	by	end-users,	testers,	and	developers.	It	focuses	on	validating	functionality	based	on	provided	specifications	or	requirements.	Within	Black	Box	Testing,
there	are	two	main	types:	Functional	Testing	ensures	that	system	requirements	are	met	by	testing	against	functional	specifications.	Other	forms	of	Black	Box	Testing	include	Non-Functional	Testing	Verification	and	Functional	Testing	Classification	Testing	Non-Functional	Testing	is	a	type	of	software	testing	performed	to	verify	non-functional
requirements	of	an	application,	ensuring	its	behavior	aligns	with	specified	requirements.	It	tests	aspects	not	covered	by	functional	testing,	distinguishing	between	different	types	of	testing.	**Functional	Testing	Types**	Functional	Testing	will	be	divided	into	further	types:	1.	**Unit	Testing**:	A	method	of	testing	individual	units	or	components	of	a
software	application.	2.	**Integration	Testing**:	Tests	how	different	units	or	components	interact	with	each	other.	3.	**System	Testing**:	Evaluates	overall	functionality	and	performance	of	a	complete,	integrated	software	solution.	**Non-Functional	Testing	Types**	Types	of	non-functional	testing	include:	1.	**Performance	Testing**:	Verifies	software
applications	perform	properly	under	expected	workload	conditions.	2.	**Usability	Testing**:	Tests	how	easy	a	system	is	to	use	from	an	end-user's	perspective.	3.	**Compatibility	Testing**:	Checks	an	application's	compatibility	with	various	platforms	and	environments.	**Software	Testing	Levels**	Different	levels	of	testing	can	be	classified	into	4	main
categories:	1.	**Unit	Testing**:	Tests	individual	components	or	units	of	software.	2.	**Integration	Testing**:	Verifies	integrated	modules	work	as	expected	after	combining	unit-tested	components.	3.	**System	Testing**:	Tests	complete,	integrated	software	solutions	across	all	system	elements.	Software	testing	ensures	the	system	meets	requirements
by	conducting	Acceptance	Testing,	which	verifies	user	needs	before	delivery.	The	importance	of	software	testing	lies	in	its	ability	to	identify	defects	early	on,	improving	software	quality	and	customer	satisfaction.	Testing	helps	uncover	bugs,	allowing	for	timely	fixes	and	preventing	costly	errors.	It	also	enhances	reliability,	security,	and	performance,
ultimately	saving	time	and	money.	Additionally,	software	testing	aids	scalability	by	identifying	potential	issues	before	they	arise.	Best	practices	for	software	testing	include:	1.	Continuous	Testing:	Project	teams	test	each	build	as	it	becomes	available,	reducing	risks	and	improving	functionality.	2.	User	Involvement:	Developers	should	involve	users	in
the	process	to	understand	customer	needs	and	develop	software	from	a	user-centric	perspective.	3.	Dividing	Tests:	Breaking	down	tests	into	smaller	parts	saves	time	and	resources,	while	also	allowing	for	better	analysis	of	test	results.	4.	Metrics	and	Reporting:	Integrated	reporting	tools	help	team	members	share	goals	and	test	results,	providing	an
overview	of	project	health.	5.	Regression	Testing:	This	step	ensures	validation	of	the	application	by	re-testing	after	changes	have	been	made.	6.	Service	Virtualization:	Simulating	systems	and	services	allows	for	testing	in	a	controlled	environment,	reducing	costs	and	increasing	efficiency.	By	following	these	best	practices,	software	testing	becomes	an
integral	part	of	the	development	cycle,	ensuring	high-quality	products	that	meet	user	needs.	Testing	enables	teams	to	reduce	dependency	and	start	the	testing	process	sooner,	allowing	them	to	modify	and	reuse	configurations	to	test	different	scenarios	without	altering	the	original	environment.	The	functionality	of	a	software	being	tested	is	verified	by
identifying	any	differences	between	its	actual	performance	and	expected	requirements.	This	process	ensures	that	the	product	meets	the	required	standards	and	is	free	from	defects.	It	not	only	helps	in	detecting	faults	but	also	improves	the	software's	efficiency,	accuracy,	and	usability.	According	to	ANSI/IEEE	1059	standard,	testing	involves	analyzing
a	software	item	to	detect	differences	between	existing	and	required	conditions.	The	primary	goal	of	Software	Testing	is	to	identify	issues	early	in	the	development	phase,	minimizing	risks	at	later	stages.	This	can	be	achieved	through	manual	or	automated	testing	methods.	Manual	testing	involves	a	tester	examining	the	software	manually,	while
automation	testing	uses	test	scripts	written	in	a	preferred	programming	language	to	evaluate	the	software	against	its	requirements.	Software	Testing	Life	Cycle	(STLC)	is	a	structured	approach	to	ensure	that	the	software	application	meets	its	requirements	and	is	bug-free.	Each	phase	of	STLC	has	specific	objectives	and	deliverables.	The	primary
objective	is	to	find	and	document	any	defects	early,	minimizing	the	risk	of	fixing	them	later.	The	stages	of	STLC	are:	1.	Requirement	Analysis:	Testers	review	the	requirements,	identifying	missing	or	ambiguous	areas	and	reporting	these	to	stakeholders.	2.	Test	Planning:	This	phase	defines	all	testing	plans,	including	objectives,	scope,	testing	methods,
environment,	resources,	test	cases,	data,	time,	effort,	cost,	and	roles.	3.	Test	Case	Design:	Detailed	test	cases	are	created,	specifying	steps,	pre-conditions,	test	data,	and	expected	results	for	each	scenario.	Please	note	that	the	provided	text	will	be	rewritten	using	the	"ADD	SPELLING	ERRORS	(SE)"	method,	with	a	40%	probability	of	introducing
occasional	and	rare	spelling	mistakes	to	subtly	alter	the	text	while	maintaining	its	original	meaning.	The	process	of	quality	assurance	involves	several	steps,	including	defining	test	cases,	reviewing	and	updating	them,	and	creating	a	Requirement	Traceability	Matrix	(RTM)	to	map	requirements	to	test	cases.	The	testing	environment	must	be	set	up	to
mirror	the	end-user's	environment,	with	developers	working	under	the	supervision	of	a	Test	Manager.	Smoke	testing	is	performed	as	soon	as	the	environment	is	developed	to	verify	its	readiness.	Once	the	environment	is	in	place,	test	cases	are	executed,	and	any	failures	are	logged	into	the	defect	tracking	management	system.	Developers	review
defects,	fix	them,	and	reassign	them	to	the	testing	team	for	retesting.	The	testing	team	also	performs	regressing	testing	to	ensure	that	changes	don't	introduce	new	issues.	Test	reports	are	created	and	shared	with	relevant	stakeholders.	The	final	stage	of	the	Software	Testing	Life	Cycle	(STLC)	is	test	closure,	which	involves	formalizing	the	completion
of	testing	activities	after	all	test	cases	have	been	executed,	bugs	reported	and	resolved,	and	exit	criteria	met.	Feedback/Improvements	are	analyzed	and	resolved	during	testing,	with	feedback	worked	upon	to	smooth	future	testing	processes.	Test	closure	is	formally	signed	off	by	project	managers	and	key	stakeholders	to	confirm	the	testing	phase
meets	defined	criteria	and	that	software	is	ready	for	production	launch.	Software	testers	can	use	various	models	like	the	V-Model,	Honeycomb	Model,	and	Test	Pyramid	Model	to	ensure	systematic	and	effective	testing	throughout	development.	These	models	help	identify	defects	early	on,	reducing	risks	and	ensuring	higher	quality	in	the	software
lifecycle.	The	V-Model	emphasizes	validation	and	verification	at	each	stage,	while	the	Honeycomb	Model	focuses	on	integration	testing,	especially	for	API-driven	systems.	On	the	other	hand,	the	Test	Pyramid	Model	prioritizes	unit	tests	at	the	base,	followed	by	integration	tests,	to	ensure	efficient	and	scalable	testing.	In	addition	to	these	models,
software	testing	can	be	approached	in	two	primary	ways:	manual	and	automated.	Manual	testing	involves	testers	executing	test	cases	without	automation	tools,	often	used	for	exploratory,	usability,	and	ad-hoc	testing	where	human	insight	is	needed.	Manual	software	testing	relies	on	human	judgment	to	detect	issues	that	may	not	be	easily	identified
through	automation.	It's	time-consuming	for	large-scale	projects	and	repetitive	tasks.	Automation	testing,	on	the	other	hand,	uses	tools	to	execute	test	cases	automatically,	reducing	the	need	for	human	intervention.	This	approach	is	well-suited	for	repetitive	tasks,	saving	time	and	effort	by	eliminating	human	error	in	test	execution.	It	requires	an	initial
investment	in	automation	tools	and	script	development	but	pays	off	over	time	with	faster	feedback	and	reduced	manual	effort.	Software	testing	is	a	crucial	part	of	the	Software	Development	Life	Cycle	(SDLC).	There	are	various	types	of	testing	that	focus	on	different	aspects	of	software,	including	functional,	unit,	integration,	and	system	testing.
Functional	testing	verifies	software	against	requirement	specifications	and	validates	its	functions	and	features.	Unit	testing	tests	individual	units	of	code	in	isolation,	while	integration	testing	checks	data	flow	between	modules.	System	testing	evaluates	the	entire	software	system	as	a	whole.	(Note:	I	used	the	"ADD	SPELLING	ERRORS	(SE)"	rewriting
method	to	paraphrase	the	text.)	Non-Functional	Testing	Explained	The	testing	process	involves	assessing	various	components	to	ensure	the	overall	performance,	usability,	scalability,	user	experience,	and	security	of	a	system.	To	optimize	software	development,	parallelize	testing	with	development	to	catch	bugs	early	on.	This	saves	time	in	the	long	run
and	boosts	productivity.	Although	it's	impossible	to	create	a	100%	bug-free	app,	continuous	testing	can	refine	the	software	and	make	it	more	user-friendly.	Quality	assurance	is	crucial,	as	it	ensures	the	software	meets	expectations	and	standards.	Verification	checks	if	the	developed	product	is	correct,	while	validation	confirms	that	it	serves	its
intended	purpose.	Accurate	documentation	throughout	the	Software	Testing	Life	Cycle	(STLC)	is	vital	for	reference	purposes.	This	includes	test	plans,	strategies,	cases,	results,	and	closures.	Satisfied	customers	are	essential	to	a	software	company's	success.	Continuous	testing,	bug	resolution,	and	customer	feedback	implementation	all	contribute	to
increased	productivity	and	trust.	To	achieve	efficient	software	testing,	follow	best	practices	such	as	developing	comprehensive	test	plans,	optimizing	team	efforts,	improving	test	coverage,	and	early	bug	identification.	These	best	practices	include:	1.	Developing	formal	test	plans	ahead	of	time	to	outline	scope,	resources,	objectives,	estimation,
schedule,	and	deliverables.	2.	Regularly	reviewing	and	updating	test	plans	to	ensure	they	remain	relevant.	3.	Assigning	a	dedicated	team	for	testing	and	ensuring	clear	communication	among	team	members.	4.	Focusing	on	critical	areas	and	high-risk	components	during	testing.	5.	Encouraging	continuous	learning	and	skill	development	within	the
testing	team.	By	following	these	practices,	software	companies	can	deliver	high-quality	products	that	meet	customer	expectations,	ultimately	leading	to	increased	customer	satisfaction	and	loyalty.	Having	up-to-date	documentation	can	ensure	that	anyone	who	joins	or	leaves	a	team	has	a	solid	understanding	of	the	software's	functionality.	This	is
especially	important	in	agile	development	environments	where	the	focus	is	on	early	detection	and	resolution	of	bugs.	In	contrast	to	traditional	testing	methods,	which	often	occur	after	project	completion,	Shift-Left	Testing	emphasizes	initiating	testing	from	the	outset.	By	doing	so,	it	becomes	possible	to	catch	errors	earlier,	thereby	saving	time	and
resources	while	fostering	a	healthier	collaboration	between	developers	and	testers.	Ultimately,	this	approach	accelerates	product	delivery	and	maximizes	test	coverage.	Regular	QA	technical	reviews	are	also	crucial	in	ensuring	that	software	meets	established	standards	and	quality	requirements.	These	reviews	involve	examining	testing	artifacts	such
as	design	documents	and	test	cases	to	guarantee	alignment	with	set	standards.	Formal	technical	reviews	(FTRs)	are	conducted	by	a	group	of	stakeholders	with	diverse	roles,	leading	to	the	creation	of	an	FTR	report	detailing	what	was	reviewed,	who	participated,	and	any	findings	or	decisions	made.	For	accurate	simulation	of	real-world	conditions,
testing	on	actual	devices	is	necessary,	as	it	provides	conditions	such	as	low	battery,	slow	network	speeds,	and	more.	This	approach	contrasts	with	simulators	and	emulators	that	lack	to	replicate	the	behavior	and	performance	of	a	genuine	device	accurately.	Enhanced	communication	between	developers	and	testers	is	also	vital	in	resolving	issues
during	test	execution.	Face-to-face	communication	can	help	both	parties	express	their	views	clearly,	avoid	misunderstandings,	and	reach	mutual	conclusions	on	problems	encountered.	Furthermore,	bug	triage	meetings	are	useful	for	reviewing,	prioritizing,	and	assigning	bugs	to	team	members,	thereby	ensuring	the	most	critical	defects	receive
prompt	attention.	Automated	tests	should	be	integrated	into	the	CI/CD	pipeline	to	streamline	the	process	of	building,	testing,	and	deploying	software.	This	reduces	manual	effort	and	minimizes	the	likelihood	of	errors	associated	with	repetitive	tasks,	thus	enhancing	efficiency	and	productivity	in	software	development.	Automating	Code	Testing	in	CI
Pipelines	to	Ensure	Bug-Free	Deployment	A	well-structured	quality	assurance	process	is	crucial	for	delivering	high-quality	software.	By	integrating	automated	testing	into	the	Continuous	Integration	(CI)	pipeline,	developers	can	ensure	that	only	bug-free	code	is	deployed	into	production.	BrowserStack:	A	Comprehensive	Cloud-Based	Testing	Platform
For	software	testing	needs,	BrowserStack	offers	a	comprehensive	solution	for	testing	web	and	mobile	applications	on	real	devices	and	browsers.	The	platform	provides:	*	Access	to	3500+	real	devices	and	browsers	for	comprehensive	testing	across	various	OS	*	Automated	testing	capabilities	that	speed	up	execution	and	reduce	manual	efforts	*	Visual
testing	using	Percy	to	detect	design	inconsistencies	and	UI	bugs	across	screen	sizes	and	browsers	*	Cross-browser	compatibility	to	ensure	consistent	performance	across	multiple	browsers	and	OS	*	Seamless	integration	with	popular	testing	frameworks,	CI/CD	tools,	and	project	management	systems	The	Importance	of	Software	Testing	Software
testing	is	critical	for	ensuring	quality	and	reliability.	The	Software	Testing	Life	Cycle	(STLC)	offers	a	structured	approach,	while	models	like	the	Honeycomb,	V-Model,	and	Test	Pyramid	guide	effective	validation.	Both	manual	and	automated	testing	are	essential	for	evaluating	functionality	and	performance.	Benefits	of	Using	BrowserStack
BrowserStack	provides	access	to	real	devices,	automated	testing,	and	seamless	integration,	helping	teams	deliver	high-quality	software.	**Getting	Started	with	Software	Testing**	For	those	new	to	manual	testing,	an	online	video	tutorial	is	available	to	provide	foundational	skills	and	a	deep	understanding	of	key	Software	Testing	concepts.	A
comprehensive	guide	on	choosing	QA	as	a	career	is	also	recommended	for	beginners.	Software	testing	is	an	in-demand	career	with	relatively	easy	entry	requirements,	as	tools	are	straightforward	to	learn,	and	it	plays	a	crucial	role	in	the	software	development	life	cycle.	This	sector	is	evergreen	in	the	IT	industry	due	to	its	benefits,	including	delivering
high-quality	products	to	customers,	mitigating	risks	and	problems	early	on,	saving	time	and	money,	and	ensuring	customer	satisfaction	through	UI/UX	testing.	It's	an	accessible	career	path	for	those	not	interested	in	coding	and	offers	opportunities	for	growth	and	real-time	exposure.	Choosing	software	testing	as	a	career	provides	a	good	salary,	the
thrill	of	bug-solving,	and	contributing	to	quality	software	products.

